DOI QR코드

DOI QR Code

Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells

  • Kim, Jwa-Young (Department of Oral and Maxillofacial Surgery, Hallym University) ;
  • Choi, Je-Yong (Department of Biochemistry & Cell Biology, Skeletal Diseases Genome Research Center, Kyungpook National University) ;
  • Jeong, Jae-Hwan (Department of Biochemistry & Cell Biology, Skeletal Diseases Genome Research Center, Kyungpook National University) ;
  • Jang, Eun-Sik (Department of Oral and Maxillofacial Surgery, Hallym University) ;
  • Kim, An-Sook (Department of Oral and Maxillofacial Surgery, Hallym University) ;
  • Kim, Seong-Gon (Department of Oral and Maxillofacial Surgery, Collage of Dentistry, Gangneung-Wonju National University) ;
  • Kwon, Hae-Yong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Jo, You-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Yeo, Joo-Hong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
  • 발행 : 2010.01.31

초록

Silk fibroin, produced by the silkworm Bombyx mori, has been widely studied as a scaffold in tissue engineering. Although it has been shown to be slowly biodegradable, cellular responses to degraded silk fibroin fragments are largely unknown. In this study, silk fibroin was added to MG-63 cell cultures, and changes in gene expression in the MG-63 cells were screened by DNA microarray analysis. Genes showing a significant (2-fold) change were selected and their expression changes confirmed by quantitative RT-PCR and western blotting. DNA microarray results showed that alkaline phosphatase (ALP), collagen type-I alpha-1, fibronectin, and transforming growth factor-${\beta}1$ expressions significantly increased. The effect of degraded silk fibroin on osteoblastogenic gene expression was confirmed by observing up-regulation of ALP activity in MG-63 cells. The finding that small fragments of silk fibroin are able to increase the expression of osteoblastogenic genes suggests that controlled degradation of silk fibroin might accelerate new bone formation.

키워드

참고문헌

  1. Cao, Y. and Wang, B. (2009) Biodegradation of silk biomaterials. Int. J. Mol. Sci. 10, 1514-1524 https://doi.org/10.3390/ijms10041514
  2. Aramwit, P., Kanokpanont, S., De-Eknamkul, W. and Srichana, T. (2009) Monitoring of inflammatory mediators induced by silk sericin. J. Biosci. Bioeng. 107, 556-561 https://doi.org/10.1016/j.jbiosc.2008.12.012
  3. Santin, M., Motta, A., Freddi, G. and Cannas, M. (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. 46, 382-389 https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R
  4. Um, I. C., Kweon, H. Y., Park, Y. H. and Hudson, S.(2001) Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int. J. Biol. Macromol. 29, 91-97 https://doi.org/10.1016/S0141-8130(01)00159-3
  5. Minoura, N., Tsukada, M. and Nagura, M. (1990) Physicochemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11, 430-434 https://doi.org/10.1016/0142-9612(90)90100-5
  6. Lu, Q., Zhang, S., Hu, K., Feng, Q., Cao, C. and Cui, F.(2007) Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds. Biomaterials 28, 2306-2313 https://doi.org/10.1016/j.biomaterials.2007.01.031
  7. Kweon, H., Yeo, J. H., Lee, K. G., Lee, H. C., Na, H. S.,Won, Y. H. and Cho, C. S. (2008) Semi-interoenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing. Biomed Mater 3, 034115 https://doi.org/10.1088/1748-6041/3/3/034115
  8. Roh, D. H., Kang, S. Y., Kim, J. Y., Kwon, Y. B., Kweon,H. Y., Lee, K. G., Park, Y. H., Baek, R. M., Heo, C. Y.,Choe J. and Lee, J. H. (2006) Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J. Mater. Sci. Mater. Med. 17, 547-552 https://doi.org/10.1007/s10856-006-8938-y
  9. Karageorgiou, V., Meinel, L., Hofmann, S., Malhotra, A.,Volloch, V. and Kaplan, D. (2004) Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J. Biomed. Mater. Res. A. 71, 528-537
  10. Sofia, S., McCarthy, M. B., Gronowicz, G. and Kaplan, D.L. (2001) Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 54, 139-148 https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
  11. Uebersax, L., Hagenmüller, H., Hofmann, S., Gruenblatt, E.,Müller, R., Vunjak-Novakovic, G., Kaplan, D. L., Merkle, H.P. and Meinel, L. (2006) Effect of scaffold design on bone morphology in vitro. Tissue Eng. 12, 3417-3429 https://doi.org/10.1089/ten.2006.12.3417
  12. Li, M., Ogiso, M. and Minoura, N. (2003) Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 24, 357-365 https://doi.org/10.1016/S0142-9612(02)00326-5
  13. Cai, K., Yao, K., Lin, S., Yang, Z., Li, X., Xie, H., Qing, T. and Gao, L. (2002) Poly (D, L-lactic acid) surfaces modifiedby silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 23, 1153-1160 https://doi.org/10.1016/S0142-9612(01)00230-7
  14. Kim, K. H., Jeong, L., Park, H. N., Shin, S. Y., Park, W.M., Lee, S. C., Kim, T. I., Park, Y. J., Seol, Y. J., Lee, Y. M.,Ku, Y., Rhyu, I. C., Han, S. B. and Chung, C. P. (2005)Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J. Biotechnol. 120, 327-339 https://doi.org/10.1016/j.jbiotec.2005.06.033
  15. Mori, H. and Tsukada, M. (2000) New silk protein: modification of silk protein by gene engineering for production of biomaterials. J. Biotechnol. 74, 95-103
  16. Barry, E. L. and Mosher, D. F. (1989) Factor XIIIa-mediated cross-linking of fibronectin in fibroblast cell layers.Cross-linking of cellular and plasma fibronectin and of amino-terminal fibronectin fragments. J. Biol. Chem. 264, 4179-4185
  17. Smith, J. C., Synes, K., Hynes, R. O. and DeSimone, D.(1990) Mesoderm induction and the control of gastrulationin Xenopus laevis: the roles of fibronectin and integrins. Development 108, 229-238
  18. Pankov, R. and Ymada, K. M. (2002) Fibronectin at a glance. J. Cell Sci. 115, 3861-3863 https://doi.org/10.1242/jcs.00059
  19. Williams, C. M., Engler, A. J., Daniel Slone, R., Galante, L.L. and Schwarzbauer, J. E. (2008) Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer Res. 68, 3185-3192 https://doi.org/10.1158/0008-5472.CAN-07-2673
  20. Cassinelli, C., Cascardo, G., Morra, M., Draqui, L., Motta, A. and Catapano, G. (2006) Physical-chemical and biological characterization of silk fibroin-coated porous membranes for medical applications. Int. J. Artif. Organs 29, 881-892
  21. Couchourel, D., Aubry, I., Delalandre, A., Lavigne, M.,Martel-Pelletier, J., Pelletier, J. P. and Lajeunesse, D. (2009)Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum. 60, 1438-1450 https://doi.org/10.1002/art.24489
  22. Mansell, J. P., Tarlton, J. F. and Bailey, A. J. (1997)Biochemical evidence for altered subchondral bone collagen metabolism in osteoarthritis of the hip. Br. J. Rheumatol. 36, 16-19 https://doi.org/10.1093/rheumatology/36.1.16
  23. Massicotte, F., Lajeunesse, D., Benderdour, M., Pelletier, J.P., Hilal, G. and Duval, N. (2002) Can altered production of interleukin1 $\beta$, interleukin-6, transforming growth factor-$\beta$ and prostaglandin E2 by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis Cartilage. 10, 491-500 https://doi.org/10.1053/joca.2002.0528
  24. Hopwood, B., Tsykin, A., Findlay, D. M. and Fazzalari, N.L. (2007) Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodeling, WNT and transforming growth factor $\beta$/bone morphogenetic protein signaling. Arthritis Res. Ther. 9, R100 https://doi.org/10.1186/ar2301
  25. Kim, I. Y., Kim, M. M. and Kim, S. J. (2005) Transforming Growth Factor-$\beta$: biology and clinical relevance. J. Biochem. Mol. Biol. 38, 1-8 https://doi.org/10.5483/BMBRep.2005.38.1.001
  26. Liu, L., Liu, J., Wang, M., Min, S., Cai, Y., Zhu, L. and Yao, J. (2008) Preparation and characterization of nanohydroxyapatite/silk fibroin porous scaffolds. J. Biomater. Sci. Polym. Ed. 19, 325-338 https://doi.org/10.1163/156856208783721010
  27. Kim, H. J., Kim, U. J., Kim, H. S., Li, C., Wada, M., Leisk,G. G. and Kaplan, D. L. (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42, 1226-1234 https://doi.org/10.1016/j.bone.2008.02.007
  28. Kim, S. G., Kim, M. H., Chae, C. H., Jung, Y. K. and Choi, J. Y. (2008) Downregulation of matrix metalloproteinases in hyperplastic dental follicles results in abnormal tooth eruption. BMB Rep. 41, 322-327 https://doi.org/10.5483/BMBRep.2008.41.4.322
  29. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0

피인용 문헌

  1. Accelerated healing with the use of a silk fibroin membrane for the guided bone regeneration technique vol.112, pp.6, 2011, https://doi.org/10.1016/j.tripleo.2011.05.002
  2. Silk polymer for medical applications vol.52, pp.2, 2014, https://doi.org/10.7852/jses.2014.52.2.89
  3. Membranes for the Guided Bone Regeneration vol.36, pp.6, 2014, https://doi.org/10.14402/jkamprs.2014.36.6.239
  4. Development of Nano-Hydroxyapatite Graft With Silk Fibroin Scaffold as a New Bone Substitute vol.69, pp.6, 2011, https://doi.org/10.1016/j.joms.2010.07.062
  5. The changes of Proteome in MG-63 cells after induced by calcitonin gene-related peptide vol.453, pp.3, 2014, https://doi.org/10.1016/j.bbrc.2014.10.015
  6. The outermost surface properties of silk fibroin films reflect ethanol-treatment conditions used in biomaterial preparation vol.58, 2016, https://doi.org/10.1016/j.msec.2015.07.041
  7. The Synergistic Effects of Agarose Scaffold Supplemented with Low-molecular-weight Silk Fibroin in Bone Tissue Regeneration vol.23, pp.2, 2011, https://doi.org/10.7852/ijie.2011.23.2.193
  8. In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing vol.177, 2017, https://doi.org/10.1016/j.carbpol.2017.08.130
  9. Silk scaffolds in bone tissue engineering: An overview 2017, https://doi.org/10.1016/j.actbio.2017.09.027
  10. Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration vol.527, pp.1-2, 2017, https://doi.org/10.1016/j.ijpharm.2017.05.038
  11. Effect of silk fibroin peptide derived from silkworm Bombyx mori on the anti-inflammatory effect of Tat-SOD in a mice edema model vol.44, pp.12, 2011, https://doi.org/10.5483/BMBRep.2011.44.12.787
  12. The influence of RAMP1 overexpression on CGRP-induced osteogenic differentiation in MG-63 cells in vitro: An experimental study vol.114, pp.2, 2013, https://doi.org/10.1002/jcb.24375
  13. Interactions of Fibroblasts with Different Morphologies Made of an Engineered Spider Silk Protein vol.14, pp.3, 2012, https://doi.org/10.1002/adem.201180072
  14. Coatings and Films Made of Silk Proteins vol.6, pp.18, 2014, https://doi.org/10.1021/am5008479
  15. Effects of anastrozole combined with Shuganjiangu decoction on osteoblast-like cell proliferation, differentiation and OPG/RANKL mRNA expression vol.24, pp.2, 2012, https://doi.org/10.1007/s11670-012-0151-6
  16. Silk proteins stimulate osteoblast differentiation by suppressing the Notch signaling pathway in mesenchymal stem cells vol.33, pp.2, 2013, https://doi.org/10.1016/j.nutres.2012.11.006
  17. Silk peptides inhibit adipocyte differentiation through modulation of the Notch pathway in C3H10T1/2 cells vol.31, pp.9, 2011, https://doi.org/10.1016/j.nutres.2011.08.010
  18. 4-hexylresorcinol stimulates the differentiation of SCC-9 cells through the suppression of E2F2, E2F3 and Sp3 expression and the promotion of Sp1 expression vol.28, pp.2, 2012, https://doi.org/10.3892/or.2012.1845
  19. Effects of silk fibroin hydrolysate on bone metabolism in ovariectomized rats vol.30, pp.1, 2015, https://doi.org/10.7852/ijie.2015.30.1.17
  20. Comparison of unprocessed silk cocoon and silk cocoon middle layer membranes for guided bone regeneration vol.38, pp.1, 2016, https://doi.org/10.1186/s40902-016-0057-1
  21. In vitro study on silk fibroin textile structure for Anterior Cruciate Ligament regeneration vol.33, pp.7, 2013, https://doi.org/10.1016/j.msec.2013.04.027
  22. Hydroxyapatite and Silk Combination-Coated Dental Implants Result in Superior Bone Formation in the Peri-Implant Area Compared With Hydroxyapatite and Collagen Combination-Coated Implants vol.72, pp.10, 2014, https://doi.org/10.1016/j.joms.2014.06.455
  23. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo vol.18, pp.4, 2017, https://doi.org/10.3390/ijms18040858
  24. Solubility and Conformation of Silk Fibroin Membrane vol.22, pp.2, 2011, https://doi.org/10.7852/ijie.2011.22.2.101
  25. The bone regenerative effect of silk fibroin mixed with platelet-rich fibrin (PRF) in the calvaria defect of rabbit vol.36, pp.4, 2010, https://doi.org/10.5125/jkaoms.2010.36.4.250
  26. The effect of silk fibroin and rhBMP-2 on bone regeneration in rat calvarial defect model vol.36, pp.5, 2010, https://doi.org/10.5125/jkaoms.2010.36.5.366
  27. Interactions of cells with silk surfaces vol.22, pp.29, 2012, https://doi.org/10.1039/c2jm31174g
  28. Toxicity assessment of a novel silk fibroin and poly-methyl-methacrylate composite material vol.10, pp.3, 2014, https://doi.org/10.1007/s13273-014-0031-x
  29. Regeneration of rabbit calvarial defects using cells-implanted nano-hydroxyapatite coated silk scaffolds vol.19, pp.1, 2015, https://doi.org/10.1186/s40824-015-0027-1
  30. Silk Protein-Based Membrane for Guided Bone Regeneration vol.8, pp.8, 2018, https://doi.org/10.3390/app8081214
  31. The effects of proteins released from silk mat layers on macrophages vol.40, pp.1, 2018, https://doi.org/10.1186/s40902-018-0149-1