DOI QR코드

DOI QR Code

미소유체시스템을 위한 실용적인 패키징 기술

Practical Packaging Technology for Microfluidic Systems

  • 발행 : 2010.03.01

초록

본 논문은 다기능 미소유체시스템의 일체형 패키징을 위한 MSI (microfluidic system interface) 기술을 제안하고, 이를 설계, 제작, 시험 평가하였다. MSI 기술을 통해 플러그 방식의 유체 인터커넥터, 유체제어를 위한 미소밸브, 광학 인터페이스를 위한 광학창을 유체시스템에 일체형으로 쉽게 구현할 수 있었다. MSI 기술의 유용성을 보이기 위해 미소 유전자시료전처리시스템에 적용되었으며, 미소 유전자시료전처리시스템은 세포정제, 세포분리, 세포용해, DNA 고체상추출, 중합효소연쇄반응, 그리고 모세관전기영동 기능으로 구성되었다. 나아가 MSI 기술이 적용된 미소 유전자시료전처리시스템의 DNA 고체상추출 및 중합효소연쇄반응의 실험결과로부터 MSI가 미소유체시스템을 위한 실용적 패키징 기술임이 검증되었다.

This paper presents the technology for the design, fabrication, and characterization of a microfluidic system interface (MSI); the purpose of this technology is to enable the integration of complex microfluidic systems. The MSI technology can be applied in a simple manner for realizing complex arrangements of microfluidic interconnects, integrated microvalves for fluid control, and optical windows for on-chip optical processes. A microfluidic system for the preparation of genetic samples was used as the test vehicle to prove the effectiveness of the MSI technology for packaging complex microfluidic systems with multiple functionalities. The miniaturized genetic sample preparation system comprised several functional compartments, including compartments for cell purification, cell separation, cell lysis, solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. Additionally, the functional operation of the solid-phase extraction and PCR thermocycling compartments was demonstrated by using the MSI.

키워드

참고문헌

  1. Terry, S. C., Jerman, J. H. and Angell, J. B., 1979, "A Gas Chromatographic Air Analyzer Fabricated on Silicon Wafer," IEEE Trans. Electron. Devices, Vol. ED-26, No. 12, pp. 1880-1886
  2. Bakajin, O., Duke, T. A. J., Tegenfeldt. J., Chou, C.-F., Chan, S. S., Austin, R. H. and Cox, E. C., 2001, "Separation of 100-Kilobase DNA Molecules in 10 Seconds," Anal. Chem., Vol. 73, No. 24, pp. 6053-6056. https://doi.org/10.1021/ac015527o
  3. Huang, Y., Joo, S., Duhon, M., Heller, M., Wallace, B. and Xu, X., 2002, "Dielectrophoretic Cell Separation and Gene Expression Profiling on Microelectronic Chip Arrays,'' Anal. Chem., Vol. 74, No 14, pp. 3362-3371. https://doi.org/10.1021/ac011273v
  4. Fu, A. Y., Spence, C., Scherer, A., Arnold, F. H. and Quake, S. R., 1999, "A Microfabricated Fluorescence-Activated Cell Sorter," Nat. Biotechnol., Vol. 17, No. 11, pp. 1109-1111. https://doi.org/10.1038/15095
  5. Chang, K. S., Tanaka, S., Chang, C. L. and Esashi, M., 2003, "Combustor-Integrated Micro-Fuel Processor with Suspended Membrane Structure," Tech. Dig. 12th Int. Conf. Solid-State Sensors and Actuators Workshop(Transducers), Boston, USA, pp. 653-638.
  6. Han, K.-H. and Frazier, A. B., 2006, "Paramagnetic Capture Mode Magnetophoretic Microseparator for High Efficiency Blood Cell Separations," Lab Chip, Vol. 6, pp. 265-273 https://doi.org/10.1039/b514539b
  7. Man, P. F., Jones, D. K. and Mastrangelo, C. H., 1997, "Microfluidic Plastic Capillaries on Silicon Substrates: A New Inexpensive Technology for Bioanalysis Chip," Proc. IEEE Micro Electro Mechanical Systems Conference (MEMS), Nagoya, Japan, pp. 311-316.
  8. Grover, W. H., Skelley, A. M., Lui, C. N., Lagally, E. T. and Mathies, R. A., 2003, "Monolithic Membrane Valve and Diaphragm Pumps for Practical Large-Scale Integrated into Glass Microfluidic Devices," Sens. Actuators B, Vol. 89, No. 3, pp. 315-323. https://doi.org/10.1016/S0925-4005(02)00468-9
  9. Han, A., Wang, O., Graff, M., Mohanty, S. K., Edwards, T. L., Han, K.-H. and Frazier, A. B., 2003, "A Multi-Layer Plastic/Glass Microfluidic Systems Containing Electrical and Mechanical Functionality," Lab Chip, Vol. 3, No. 3, pp. 150-157. https://doi.org/10.1039/b302118a
  10. Fredrickson, C. K. and Fan, Z. H., 2004, "Macro-to-Micro Interfaces for Microfluidic Devices," Lab Chip, Vol. 4, No. 6, pp. 526-533. https://doi.org/10.1039/b410720a
  11. Stachowiak. T. B., Bohr, T., Hilder, E. F., Peterson, D. S., Yi, M., Svec, F. and Fréchet, J. M. J., 2003, "Fabrication of Porous Polymer Monoliths Covalently Attached to the Walls of Channels in Plastic Microdevices," Electrophoresis, Vol. 24, No. 21, pp. 3689-3693. https://doi.org/10.1002/elps.200305536
  12. Pattekar, A. V. and Kothare, M. V., 2003, "Novel Microfluidic Interconnectors for High Temperature and Pressure Application," J. Micromech. Microeng., Vol. 13, No. 2, pp 337-345. https://doi.org/10.1088/0960-1317/13/2/324
  13. Chen, H., Acharya, D., Gajraj, A. and Meiners, J.-C., 2003, "Robust Interconnects and Packaging for Microfluidic Elastomeric Chips," Anal. Chem., Vol. 75, No. 19, pp. 5287-5291. https://doi.org/10.1021/ac034179i
  14. Gray, B. L., Jaeggi, D., Mourlas, N. J., van Drieënhuizen, B. P., Williams, K. R., Maluf, N. I. and Kovacs, G. T. A., 1999, "Novel Interconnection Technologies for Integrated Microfluidic System," Sens. Actuators A, Vol. 77, No. 1, pp. 57-65. https://doi.org/10.1016/S0924-4247(99)00185-5
  15. Nittis, V., Fortt, R., Legge, C. H. and de Mello, A. J., 2001, "A High-Pressure Interconnect for Chemical Microsystem Applications," Lab chip, Vol. 1, No. 2, pp. 148-152. https://doi.org/10.1039/b107836b
  16. Verlee, D., Alcock, A., Clark, G., Huang, T. M., Kantor, S., Nemcek, T., Norlie, J., Pan, J., Walsworth, F. and Wong, S. T., 1996, "Fluid Circuit Technology: Integrated Interconnect Technology for Miniature Fluidic Device," in Tech. Dig. Solid-State Sensor and Actuator, Hilton Head, SC, pp. 9-14
  17. Yao, T. -J., Lee, S., Fang, W. and Tai, Y.-C., 2000, "Micromachined Rubber O-ring Micro-Fluidic Couplers," in Proc. IEEE Micro Electro Mechanical Systems Conf. (MEMS), MiyaZaki, Japan, pp. 624-627.
  18. Meng, E., Wu, S. and Tai, T.-C., 2000, "Micromachined Fluidic Couplers," in Proc. Micro Total Analysis Systems Symp. ($_{mu}{TAS}$), Enschede, Netherlands, pp. 41-44.
  19. Gonzalez, C., Collins, S. D. and Smith, R. S., 1998, "Fluidic Interconnects for Modular Assembly of Chemical Microsystems," Sens. Actuators B, Vol. 49, No. 1-2, pp. 40-45. https://doi.org/10.1016/S0925-4005(98)00035-5
  20. Gray, B. L., Cillins, S. D. and Smith, R. S., 2004, "Interlocking Mechanical and Fluidic Interconnections for Microfluidic Circuit Boards," Sens. Actuators B, Vol. 112, No. 1, pp. 18-24. https://doi.org/10.1016/j.sna.2003.10.073
  21. Puntambekar, A. and Ahn, C. H., 2002, "Self-Aligning Microfluidic Interconnects for Glass- and Plastic-Based Microfluidic Systems," J. Micromech. Microeng., Vol. 12, No. 1, pp. 35-40. https://doi.org/10.1088/0960-1317/12/1/306
  22. Yang, Z. and Maeda, R., 2003, "Socket with Built-in Valves for the Interconnection of Microfluidic Chips to Macro Constituents," J. Chromatogr. A, Vol. 1013, No. 1-2, pp. 29-33. https://doi.org/10.1016/S0021-9673(03)01125-7
  23. Bertsch, A., Lorenz, H. and Renaud, P., 1999, "3D Microfabrication by Combining Microstereolithography and Thick Resist UV Lithography," Sens. Actuators A, Vol. 73, No. 1-2, pp. 14-23. https://doi.org/10.1016/S0924-4247(98)00249-0
  24. Kovacs, G. T. A., 1998, Micromachined Transducers Sourcebook. New York: McGraw-Hill.
  25. Hosokawa, K. and Maaeda, R., 2000, "A Pneumatically-Actuated Three-Way Microvalve Fabricated with Polydimethylsiloxane using the Membrane Transfer Technique," J. Micromech. Microeng., Vol. 10, No. 3, pp. 415-420. https://doi.org/10.1088/0960-1317/10/3/317
  26. Wang, Y.-C., Choi, M. H. and Han, J., 2004, "Two-Dimensional Protein Separation with Advanced Sample and Buffer Isolation using Microfluidic Valves," Anal. Chem., Vol. 76, No. 15, pp. 4426-4431. https://doi.org/10.1021/ac0497499
  27. Lee, S., Jeong, W. and Beebe, D. J., 2003, "Microfluidic Valve with Cored Glass Microneedle for Microinjection," Lab Chip, Vol. 3, No. 3, pp. 164-167. https://doi.org/10.1039/b305692a
  28. Ren, X., Bachman, M., Sims, C., Li, G. P. and Allbritton, N., 2001, "Electroosmotic Properties of Microfluidic Channels Composed of Poly(dimethylsiloxane)," J. Chromatogr. B, Biomed. Sci. Appl., Vol. 762, No. 2, pp. 117-125. https://doi.org/10.1016/S0378-4347(01)00327-9
  29. Hu, S., Ren, X., Bachman, M., Sims, C. E., Li, G. P. and Allbritton, N., 2002, "Surface Modification of Poly(dimethylsiloxane) Microfluidic Devices by Ultraviolet Polymer Grafting," Anal. Chem., Vol. 74, No. 16, pp. 4117-4123. https://doi.org/10.1021/ac025700w
  30. Wolfe, K. A., Breadmore, M. C., Ferrance, J. P., Power, M. E., Conroy, J. F., Norris, P. M. and Landers, J. P., 2002, "Toward a Microchip-Based Solid-Phase Extraction Method for Isolation of Nucleic Acids," Electrophoresis, Vol. 23, No. 5, pp. 727-733. https://doi.org/10.1002/1522-2683(200203)23:5<727::AID-ELPS727>3.0.CO;2-O
  31. Harrison, D. J., Fluri, K., Seiler, K., Fan, Z., Effenhauser, C. S. and Manz, A., 1993, Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip," Science, Vol. 261, No. 5123, pp. 895-897. https://doi.org/10.1126/science.261.5123.895
  32. Giordano, B. C., Couch, A. J., Ferrance, J. P. and Landers, J. P., 2004, "Microchip Laser-Induced Fluorescence Detection of Proteins at Submicrogram per Milliliter Levels Mediated by Dynamic Labeling under Pseudonative Conditions," Anal. Chem., Vol. 76, No. 16, pp. 4705-4714. https://doi.org/10.1021/ac030349f
  33. Huhmer, A. F. R. and Landers, J. P., 2000, "Noncontact Infrared-Mediated Thermocycling for Effective Polymerase Chain Reaction Amplification of DNA in Nanolither Volumes," Anal. Chem, Vol 72, No. 21, pp, 5507-5512. https://doi.org/10.1021/ac000423j