A Study on the Effect of Chemical Pretreatment for Livestock Wastewater on the Linked Treatment of Sewage

축산폐수 처리 시 화학적 전처리가 연계처리에 미치는 영향 연구

  • Han, Jun-Suk (Department of biotechnology Environmental engineering division, The Catholic university of Korea) ;
  • Han, Gee-Bong (Department of biotechnology Environmental engineering division, The Catholic university of Korea)
  • 한준석 (가톨릭대학교 생명환경공학부 환경공학 청정환경연구실) ;
  • 한기봉 (가톨릭대학교 생명환경공학부 환경공학 청정환경연구실)
  • Received : 2010.03.09
  • Accepted : 2010.03.25
  • Published : 2010.03.31

Abstract

In this study, to investigate the effect of chemical pretreatment for livestock wastewater, laboratory scale test for ozonation and linked treatment of sewage were conducted. and the results were obtained as follows. The ozonation of livestock wastewater showed the COD removal rate per hour to be 17%, 78% and 62% at each pH 4, 7 and 10, respectively. With transformation of NBDCOD to biodegradable BDCOD by ozonation, the ratio of SCODcr/TCODcr was increased from 26% to 38%. Accordingly, pretreatment of livestock wastewater affected to the biological post treatment process to elevate removal efficiency by transformation of nonbiodegradable mass to biodegradable mass. As the results of linked treatment of pre-ozonated livestock wastewater and sewage in the MLE process, the treatment efficiencies of TCODcr 93.8%, T-N 74.3%, T-P 89.7%, SS 97.5% were earned at 100% of internal recycle rate. When the internal recycle rate was increased to 150%, the treatment efficiencies of TCODcr 94.5%, T-N 54.5%, T-P 70.8%, SS 98.5% were earned. Also the removal efficiencies of TCODcr 92.6%, T-N 83.1%, T-P 81.9%, SS 98.5% were earned as the internal recycle rate was increased to 200%. Especially, nitrogen removal efficiency in the linked treatment showed 74.3%, 54.5%, 83.1% at 100%, 150% and 200% of internal recycle ratio, respectively, which revealed the tendency of higher removal efficiency than that of sewage treatment.

본 연구에서는 오존을 이용하여 축산폐수를 전처리하고 일반하수와 연계하여 처리하였을 때 처리효율을 실험실 규모의 장치를 이용하여 비교 분석하였으며 결과는 다음과 같다. 축산폐수의 오존산화 결과 대상폐수의 pH를 산성(pH4), 중성(pH7), 알칼리성(pH10)으로 변화시켰을 때 각각 COD제거율은 시간당 17%, 78%, 62% 로 분석되었다. 오존산화에 의해 NBDCOD 중 일부가 미생물이 분해가능한 BDCOD 로 전환되어 SCODcr/TCODcr 비는 26%에서 약 38%로 증가하였다. 따라서, 오존산화에 의한 축산폐수의 전처리는 난분해성 물질을 생물학적 분해 가능한 물질로 일부 전환시키며 후단 생물학적 처리 단계에서의 제거효율을 높일 수 있는 영향을 미치는 것으로 분석되었다. 오존산화처리된 축산폐수와 하수와의 연계유입수를 MLE(Modified Ludzack-Ettinger) 공정으로 처리한 결과, 내부반송 100%일 때 TCODcr 93.8%, T-N 74.3%, T-P 89.7%, SS 97.5%의 처리효율을 나타냈다. 또한 내부반송율을 150%로 증가시켰을 때 처리효율은 각각 94.5%, 54.5%, 70.8%, 98.5% 로 나타났고, 200%로 증가시켰을 때 처리효율은 각각 92.6%, 83.1%, 81.9%, 98.5% 로 나타났다. 연계유입수를 원수로 사용한 경우 특히 질소제거율은 내부반송율 100%, 150%, 200%에서 각각 74.3%, 54.5%, 83.1%로 나타났으며, 모든 경우에 있어 일반하수를 원수로 사용한 경우보다 질소제거율이 우수한 것으로 분석되었다.

Keywords

References

  1. Bes-Pia, A. lborra-Clar, A, Mendoza-Roca, J.A, lborra-Clar, M.I., and Alcaina-Miranda, M.I., "Nanofiltration of biologically treated textile effluents using ozone as pre-treatment. Desalination", 167(3), pp. 387-392 (2004). https://doi.org/10.1016/j.desal.2004.06.151
  2. Tyrrell, S.A., Rippey, S.R., and Watkins, W.D., "Inactivation of bacterial and viral indicators in secondary sewage effluents, using chlorine and ozone", Wat. Res., 29(11), pp. 2483-2490 (1995). https://doi.org/10.1016/0043-1354(95)00103-R
  3. Minet. J., Langlais, F., and Naslain, R., "Thermo-michanical properties and oxidation resistance of zirconia CVI matrix composites, 2-Thermal properties and oxidation resistance", J. the Europ. Ceram. Socie., 7(5), pp. 283-293 (1991). https://doi.org/10.1016/0955-2219(91)90106-A
  4. Mussig-Zufika, M., Kommuller, A., Merkelbach, B., and Jekel, M., "Isolation and analysis of intact polyphosphate chains from activated sludges associated with biological phosphate removal", Wat. Res., 28(8), pp. 1725-1733 (1994). https://doi.org/10.1016/0043-1354(94)90244-5
  5. Beltran, F.J., Encinar, J., and Gonxalez, J.F., "Industrial wastewater advanced oxidation. Part 2. Ozone combined with hydrogen peroxide or UV radiatio", Wat. Res., 31(10), pp. 2415-2428 (1997). https://doi.org/10.1016/S0043-1354(97)00078-X
  6. Hoigne, J., "Inter-calibration of OH radical sources and water quality parameters", Wat. Sci. and Tech., 35(4), pp.1-8 (1997). https://doi.org/10.1016/S0273-1223(97)00002-4
  7. 환경관리공단, 하수분야 기술진단 결과분석 및 개선방안, (2004).
  8. 환경부, 축산폐수배출시설 및 처리시설 관리개선 방안 연구, (2003).
  9. 국립환경연구원, 축산폐기물 현황과 환경에 미치는 영향 연구, pp. 56-96 (1986).
  10. 최홍림, 우리나라 가축분뇨 대책, 농어촌과 환경, vol 10(2), pp. 16-28 (2000).
  11. 환경부, 수질오염공정시험법. (2005).
  12. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed. (1998).
  13. 축산기술연구소, 가축분뇨 자원화 및 이용기술 개발 연구, (2000).
  14. 최의소, 음영진, 지속발전을 위한 축산분뇨의 문제점과 개선방향. 한국환경과학연구협의회,(2001).
  15. 농림부, 가축분뇨 자원화 및 이용기술 개발, (2000).
  16. 환경부, 낙동강수계 물관리종합대책 (1999).
  17. 환경부, 대청호 등 금강수계 물관리종합대책 (1999).
  18. 환경부, 오염총량관리계획 수립지침, pp. 5-23 (2002).
  19. Boursier, H., Beline, F., Daumer, M.L., Guiziou., F., and Paul, E., "Modeling of biological processes during aerobic treatment of piggery wastewater aiming at process optimisation", Biore. Techn., 98, pp. 3298-3308 (2007). https://doi.org/10.1016/j.biortech.2006.07.004
  20. Lesouef, A., TalIec, X., Zeghal, S., and Vidal A., "Effect of influent quality variability on biofilter operation", Wat. Scie. and Tech., 36(1), pp. 111-117 (1997). https://doi.org/10.1016/S0273-1223(97)00343-0
  21. Ekama, G.A., Wentzel, M.C., and Sotemann, S.W., "Tracking the inorganic suspended solids through biological treatment units of wastewater treatment plants", Wat. Res., 40(19), pp. 3587-3595 (2006). https://doi.org/10.1016/j.watres.2006.05.034