Effects of transition metal-doping on the properties of ZnO nanoparticles and the photocatalytic degradation of methylene blue

전이금속 도핑이 ZnO 나노분말의 특성 및 메틸렌블루 광촉매 분해 특성에 미치는 영향

  • Chang, Han Kwon (Industrial Materials Research Department, Korea Institute of Geoscience and Mineral Resource) ;
  • Oh, Kyung Jun (Industrial Materials Research Department, Korea Institute of Geoscience and Mineral Resource) ;
  • Jang, Hee Dong (Industrial Materials Research Department, Korea Institute of Geoscience and Mineral Resource) ;
  • Cho, Kuk (Industrial Materials Research Department, Korea Institute of Geoscience and Mineral Resource) ;
  • Kim, Dong-Jin (Industrial Materials Research Department, Korea Institute of Geoscience and Mineral Resource) ;
  • Choi, Jin Hoon (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 장한권 (한국지질자원연구원, 산업원료화연구실) ;
  • 오경준 (한국지질자원연구원, 산업원료화연구실) ;
  • 장희동 (한국지질자원연구원, 산업원료화연구실) ;
  • 조국 (한국지질자원연구원, 산업원료화연구실) ;
  • 김동진 (한국지질자원연구원, 산업원료화연구실) ;
  • 최진훈 (서강대학교 화공생명공학과)
  • Received : 2010.02.17
  • Accepted : 2010.03.17
  • Published : 2010.03.30

Abstract

Transition metals such as V, Fe, and Ni were used to synthesize doped zinc oxide nanoparticles from mixed liquid precursors by using the flame spray pyrolysis (FSP). The effects of dopants on the powder properties such as morphology, specific surface area, crystal structure, and light adsorption were analyzed by TEM, BET, XRD, and UV-Vis diffuse reflection spectrum (DRS), respectively. The results showed that hexagonal wurtzite structured ZnO:M (M = V, Fe, Ni) nanoparticles were successfully synthesized by the FSP. The transition metal-doping resulted in the decrease in its particle size and crystallite size. The UV-vis absorption spectra of ZnO:M nanoparticles were also red-shifted. ZnO:V showed the highest MB degradation of 99.4% under the UV irradiation after 3 hrs.

Keywords

References

  1. 장한권, 장희동, 길대섭, 조국, 박진호 (2007). 이산화티타늄 나노분말의 화염합성 및 메틸렌블루 분해 특성, 한국지구시스템공학회지, 44(6),541-547.
  2. Ao, W., Li, J., Yang, H., Zeng, X., and Ma, X. (2006). Mechanochemical synthesis of zinc oxide nanocrystalline, Powder Technology, 168(3), 148-151. https://doi.org/10.1016/j.powtec.2006.07.014
  3. Carcia, P. F., McLean, R. S., Reilly, M. H., and Nunes, G., Jr. (2003). Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering, Applied Physics Letters, 82(7), 1117-1119. https://doi.org/10.1063/1.1553997
  4. Chang, H., Kim, S. J., Jang, H. D., and Choi, J. W. (2008). Synthetic routes for titania nanoparticles in the flame spray pyrolysis, Colloids and Surfaces A, 313-314, 282-287. https://doi.org/10.1016/j.colsurfa.2007.04.111
  5. Chen, Z. C., Zhuge, L. J., Wu, X. M., and Meng, Y. D. (2007). Initial study on the structure and optical properties of $Zn_{1}-_{x}Fe_{x}O$ films, Thin Solid Films, 515(13), 5462-5465. https://doi.org/10.1016/j.tsf.2007.01.015
  6. Hoffman, R. L., Norris, B. J., and Wager, J. F. (2003). ZnO-based transparent thin-film transistors, Applied Physics Letters, 82(5), 733-735. https://doi.org/10.1063/1.1542677
  7. Jang, H. D., Seong, C. M., Suh, Y. J., Kim, H. C., and Lee, C. K. (2004). Synthesis of lithium-cobalt oxide nanoparticles by flame spray pyrolysis, Aerosol Science and Technology, 38(10), 1027-1032. https://doi.org/10.1080/027868290524016
  8. Kammler, H. K., Madler, L., and Pratsinis, S. E. (2001). Flame synthesis of nanoparticles, Chemical Engineering and Technology, 24(6), 583-596. https://doi.org/10.1002/1521-4125(200106)24:6<583::AID-CEAT583>3.0.CO;2-H
  9. Karakitsou, K. E., and Verykios, X. E. (1993). Effects of altervalent cation doping of $TiO_{2}$ on its performance as a photocatalyst for water cleavage, Journal of Physical Chemistry, 97(6), 1184-1189. https://doi.org/10.1021/j100108a014
  10. Koshizaki, N., and Oyama, T. (2000). Sensing characteristics of ZnO-based $NO_{X}$ sensor, Sensors and Actuators B, 66(1-3), 119-121. https://doi.org/10.1016/S0925-4005(00)00323-3
  11. Li, X., He, G., Xiao, G., Liu, H., and Wang, M. (2009). Synthesis and morphology control of ZnO nanostructures in microemulsions, Journal of Colloid and Interface Science, 333(2), 465-473. https://doi.org/10.1016/j.jcis.2009.02.029
  12. Ma, X., Zhang, H., Ji, Y., Xu, J., and Yang, D. (2005). Sequential occurrence of ZnO nanoparticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution, Materials Letters, 59(27), 3393-3397. https://doi.org/10.1016/j.matlet.2005.05.076
  13. Matsoukas, T., and Friedlander, S. K. (1991). Dynamics of aerosol agglomerate formation, Journal of Colloid and Interface Science, 146(2), 495-506. https://doi.org/10.1016/0021-9797(91)90213-R
  14. Minami, T., Yamamoto, T., and Miyata T. (2000). Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering, Thin Solid Films, 366(1-2), 63-68. https://doi.org/10.1016/S0040-6090(00)00731-8
  15. Moleski, R. Leontidis, E., and Krumeich, F. (2006). Controlled production of ZnO nanoparticles from zinc glycerolate in a sol-gel silica matrix, Journal of Colloid and Interface Science, 302(1), 246-253. https://doi.org/10.1016/j.jcis.2006.07.030
  16. Mueller, R., Mädler, L., and Pratsinis, S. E. (2003). Nanoparticle synthesis at high production rates by flame spray pyrolysis, Chemical Engineering Science, 58(10), 1969-1976. https://doi.org/10.1016/S0009-2509(03)00022-8
  17. Ohta, H., Kawamura, K., Orita, M., Hirano, M., Sarukura, N., and Hosono, H. (2000). Current injection emission from a transparent $\rho$-n junction composed of $\rho-SrCu_{2}O_{2}/n-ZnO$, Applied Physics Letters, 77(4), 475-477.
  18. Osinsky, A., Dong, J. W., Kauser, M. Z., Hertog, B., Dabiran, A. M., Chow, P. P., Pearton, S. J., Lopatiuk, O., and Chernyak, L. (2004). MgZnO/AlGaN heterostructure light-emitting diodes, Applied Physics Letters, 85(19), 4272-4274. https://doi.org/10.1063/1.1815377
  19. Rodriguez-Paez, J. E., Caballero, A. C., Villegas, M., Moure, C., Duran, P., and Fernandez, J. F. (2001). Controlled precipitation method: formation mechanism of ZnO nanoparticles, Journal of the European Ceramic Society, 21(7), 925-930. https://doi.org/10.1016/S0955-2219(00)00283-1
  20. Santos, D. A. A., Rocha, A. D. P., and Macedo, M. A. (2008). Rietveld refinement of transition metal doped ZnO, Powder Diffraction, Suppl. 23(2), S36-S41. https://doi.org/10.1154/1.2903739
  21. Suranarayana, C., and Norton, M. G. (1998). X-ray diffraction: A practical approach, Plenum Press, New York and London.
  22. Wan, Q. Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., and Lin, C. L. (2004). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Applied Physics Letters, 84(18), 3654-3656. https://doi.org/10.1063/1.1738932
  23. Wang, L., Meng, L., Teixeira, V., Song, S., Xu, Z., and Xu, X. (2009). Structure and optical properties of ZnO:V thin films with different doping concentrations, Thin Solid Films, 517(13), 3721-3725. https://doi.org/10.1016/j.tsf.2008.12.043