DOI QR코드

DOI QR Code

Experimental Study on Blast Resistance Improvement of RC Panels by FRP Retrofitting

철근콘크리트 패널의 FRP 보강에 의한 방폭 성능 향상에 관한 실험 연구

  • Ha, Ju-Hyung (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Yi, Na-Hyun (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Kim, Sung-Bae (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Choi, Jong-Kwon (Material Division, Hyundai Institute of Construction Technology) ;
  • Kim, Jang-Ho Jay (Dept. of Civil and Environmental System Engineering, Yonsei University)
  • 하주형 (연세대학교 사회환경시스템공학부) ;
  • 이나현 (연세대학교 사회환경시스템공학부) ;
  • 김성배 (연세대학교 사회환경시스템공학부) ;
  • 최종권 (현대건설기술연구소 재료팀) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • Published : 2010.02.28

Abstract

Recently, FRP usage for strengthening RC structures in civil engineering has been increasing. Especially, the use of FRP to strengthen structures against blast loading is growing rapidly. To estimate FRP retrofitting effect under blast loading, blast tests with nine $1,000{\times}1,000{\times}150\;mm$ RC panel specimens, which were retrofitted with carbon fiber reinforced polymer (CFRP), Polyurea, CFRP with Poly-urea and basalt fiber reinforced polymer (BFRP) have been carried out. The applied blast load was generated by the detonation of 15.88 kg ANFO explosive charge at 1.5 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included central deflection and strains at steel, concrete, and FRP surfaces. The failure mode of each specimen was observed and compared with a control specimen. From the test results, the blast resistance of each retrofit material was determined. The test results of each retrofit material will provide the basic information for preliminary selection of retrofit material to achieve the target retrofit performance and protection level.

최근, 토목 분야에서의 RC 구조물의 보강을 위한 FRP 사용이 증대되고 있다. 특히, FRP로 보강된 구조물의 폭발저항성능에 대한 관심이 증가하면서 폭발하중에 대한 FRP의 보강 효과에 대한 검토가 필요하게 되었다. 폭발하중을 받는 FRP의 보강 효과를 측정하기 위해 9개의 $1,000{\times}1,000{\times}150\;mm$의 RC 패널 시편을 제작하였으며, 각 시편에는 탄소섬유복합재(CFRP), 폴리우레아, 폴리우레아와 CFRP의 동시 보강한 경우와 현무암 섬유 복합재(BFRP, basalt fiber reinforced polymer)로 보강하여 각 보강 섬유의 폭발 저항 성능을 검토하고자 하였다. 폭발하중은 ANFO 15.88 kg의 장약량을 1.5 m 이격거리로 적용하였으며, 측정하고자 한 데이터는 초기 압력폭발압력하중 뿐만 아니라, 반사압력, 충격량, 중앙부의 처짐, 철근, 콘크리트 및 FRP의 변형률를 측정하였다. 각 시편의 파괴모드는 control 시편인 일반 강도 시편과 비교하였다. 실험을 통해 보강 재료에 따른 방폭 성능을 파악하였으며, 이 실험 결과는 구조물에 요구되는 방호 성능 및 방호도에 따라 보강 재료를 선택하는 기초자료로 활용될 수 있다.

Keywords

References

  1. 김호진, 남진원, 김성배, 이우철, 변근주, "폭발하중을 받는 콘크리트 벽체 구조물의 보강 성능에 대한 해석적 분석," 콘크리트학회 논문집, 19권, 2호, 2007, pp. 241-250. https://doi.org/10.4334/JKCI.2007.19.2.241
  2. 남진원, 김호진, 김성배, 변근주, "폭발하중을 받는 콘크리트 벽체구조의 해석기법," 대한토목학회 논문집, 27권, 3호, 2007, pp. 433-442.
  3. Nam. J. W., Kim, J. H. J., Kim, S. B., Yi, N. H., and Byun, K. J., "A Study on Mesh Size Dependency of Finite Element Blast Structural Analysis Induced by Non-uniform Pressure Distribution from High Explosive Blast Wave," KSCE Journal of Civil Engineering, Vol. 12, No. 4, 2008, pp. 259-265. https://doi.org/10.1007/s12205-008-0259-x
  4. Nam, J. W., Kim, H. J., Kim, S. B., Kim, J. H. J., and Byun, K. J., "Analytical Study of Finite Element Models for FRP Retrofitted Concrete Structure under Blast Loads," International Journal of Damage Mechanics, Vol. 18, No. 5, 2009, pp. 461-490. https://doi.org/10.1177/1056789507088339
  5. Nam, J. W., Kim, H. J., Yi, N. H., Kim, I. S., Kim, J. H. J., and Choi, H. J., "Blast Analysis of Concrete Arch Structures for FRP Retrofitting Design," Computers and Concrete, Vol. 6, No. 4, 2009, pp. 305-318. https://doi.org/10.12989/cac.2009.6.4.305
  6. Krauthammer, T., Modern Protective Structures, CRC Press, 2007.
  7. DTRA/TSWG Program, Blast Mitigation for Structure, Status Report, Commission on Engineering and Technical Systems, National Research Council, National Academy Press, Washington, DC, USA, 1999.
  8. Patoary, M. K. H. and Tan, K. H., "Blast Resistance of Prototype In-built Masonry Walls Strengthened with FRP Systems," 6th Int. Conf. on Fibre-Reinforced Plastics for Reinforced Concrete Structures, Singapore, 2003, pp. 1189-1198.
  9. Malvar, L. J., Crawford, J. E., and Morrill, K. B., "Use of Composites to Resist Blast," Journal of Composites for Construction, Vol. 11, No. 6, 2007, pp. 601-610. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:6(601)
  10. Chen, Z. F. and Wan, L. L., "Evaluzation of CFRP, GFRP, and BFRP Material Systems for the Strengthening of RC Slabs," Journal of Reinfroced Plastices and Composites, Vol. 27, No. 12, 2008. pp. 1233-1243. https://doi.org/10.1177/0731684407084122
  11. Buchan, P. A. and Chen, J. F., "Blast Resistance of FRP Composites and Polymer Strengthened Concrete and Masonry Structures-A State-of-the-art Review," Composites: Part B Engineering, Vol. 38, No. 5-6, 2007, pp. 509-522. https://doi.org/10.1016/j.compositesb.2006.07.009
  12. Kim, H. J., "Blast Analysis of FRP-retrofitted Concrete Structures Considering FRP Failure Mechanism," Doctoral Thesis, Yonsei University, Seoul, Korea, 2007.
  13. Mosalam, K. M. and Mosallam, A. S., "Nonlinear Transient Analysis of Reinforced Concrete Slabs Subjected to Blast Loading and Retrofitted with CFRP Composites," Composite Part B : Engineering, Vol. 32, Issue 8, 2001, pp. 623-636. https://doi.org/10.1016/S1359-8368(01)00044-0
  14. Muszynski, L. C. and Purcell, M. R., "Use of Composite Reinforcement to Strengthen Concrete and Air-Enterained Concrete Masonry Walls against Air Blast," Journal of Composites for Construction, ASCE, Vol. 7, No. 2, 2003, pp. 98-108. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:2(98)
  15. Ross C. A, Purcell M. R., and Jerome E. L., "Blast Response of Concrete Beams and Slabs Externally Reinforced with Fibre Reinforced Plastics (FRP)," In Proceedings of the Structure, Congress, XV-Building to Last, Portland, USA, 1997, pp. 673-677.
  16. Razaqpur, A. G., Tolba, A., and Contestabile, E., "Blast Loading Response of Reinforced Concrete Panels Reinforced with Externally Bonded GFRP Laminates," Composite Part B : Engineering, Vol. 38, 2007, pp. 535-546. https://doi.org/10.1016/j.compositesb.2006.06.016
  17. Morrill, K. B, Malvar, L. J., Crawford, J. E., and Ferritto, J. M., "Blast Resistant Design and Retrofit of Reinforced Concrete Columns and Walls," Structures-Building on the Past: Securing the Future Proceedings of Structures Congress 2004, Nashville, Tennessee, USA, 2004, pp. 1-8.
  18. Myers, J. J, Belabi, A., and El-domiaty, K. A., "Blast Resistance of Unreinforced Masonry Walls Retrofitted with Fibre Reinforced Polymers," In Proceedings of the 9th North American Masonry Conference, Clemson, USA, 2003, pp. 312-323.
  19. Davidson, J. S., Porter, J. R., Dinan, R. J, Hammons, M. I., and Connell, J. D., "Explosive Testing of Polymer Retrofit Masonry Walls," Journal of Performance of Constructed Facilities, ASCE, Vol. 18, No. 2, 2004, pp. 100-106. https://doi.org/10.1061/(ASCE)0887-3828(2004)18:2(100)
  20. Tolba, A., "Response of FRP-Retrofitted Reinforced Concrete Panels to Blast Loading," Doctoral Thesis, Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada, 2001.
  21. Nam, J. W., "Blast Analysis of RC Wall Structure Using High Strain Rate Dependent Concrete Damage Model and Non-uniform Peak Pressure Distribution Model," Doctoral Thesis, Yonsei University, Seoul, 2007.
  22. Oesterle, M. G., "Blast Simulator Wall Tests: Experimental Methods and Mitigation Strategies for Reinforced Concrete and Concrete Masonry," Doctoral Thesis, University of California, San Diego, USA, 2009.
  23. Oswald, C. J. and Wesevich, J. W., "Structural Retrofits to Increase the Blast Capacity of Roofs and Masonry Walls," In Proceedings of the SAME National Symposium on Comprehensive Force Protection, Charleston, USA, 2001.
  24. Porter, J. R., Dinan, R. J., and Hammons, M. L., "Polymer Coatings Increase Blast Resistance of Existing and Temporary Structures," AMPTIAC, Special Issue: Protecting People at Risk, Vol. 6, No. 4, 2002, pp. 47-67.

Cited by

  1. Experimental Study on Bond Behavior of Retrofit Materials by Bond-Shear Test vol.24, pp.1, 2012, https://doi.org/10.4334/JKCI.2012.24.1.045
  2. Mitigation of Blast Pressure according to the Variation of Density and Thickness of the Water Gel vol.13, pp.3, 2013, https://doi.org/10.9798/KOSHAM.2013.13.3.123
  3. Evaluating Local Damages and Blast Resistance of RC Slabs Subjected to Contact Detonation vol.17, pp.1, 2013, https://doi.org/10.11112/jksmi.2013.17.1.037
  4. Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Impact-Resistance Behavior under Impact Loading vol.25, pp.5, 2013, https://doi.org/10.4334/JKCI.2013.25.5.485
  5. Influence of Measurements of Lathe Scrap on the Characteristics of Fiber Reinforced Cementitious Composites vol.6, pp.2, 2015, https://doi.org/10.11004/kosacs.2015.6.2.070
  6. Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Blast Resistance Behavior under Blast Loading Scenario vol.28, pp.6, 2016, https://doi.org/10.4334/JKCI.2016.28.6.673
  7. Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet vol.26, pp.5, 2014, https://doi.org/10.4334/JKCI.2014.26.5.627