DOI QR코드

DOI QR Code

A Failure Probability Estimation Method of Nonlinear Bridge Structures using the Non-Gaussian Closure Method

Non-Gaussian Closure 기법을 적용한 비선형 교량 구조계의 파괴확률 추정 기법

  • Published : 2010.02.28

Abstract

A method is presented for evaluating the seismic failure probability of bridge structures which show a nonlinear hysteretic dynamic behavior. Bridge structures are modeled as a bilinear dynamic system with a single degree of freedom. We regarded that the failure of bridges will occur when the displacement response of a deck level firstly crosses the predefined limit state during a duration of strong motion. For the estimation of the first-crossing probability of a nonlinear structural system excited by earthquake motion, we computed the average frequency of crossings of the limit state. We presented the non-Gaussian closure method for the approximation of the joint probability density function of response and its derivative, which is required for the estimation of the average frequency of crossings. The failure probabilities are estimated according to the various artificial earthquake acceleration sets representing specific seismic characteristics. For the verification of the accuracy and efficiency of presented method, we compared the estimated failure probabilities with the results evaluated from previous methods and the exact values estimated with the crude Monte-Carlo simulation method.

비선형 이력거동을 가지는 교량 구조계에 지진하중이 작용하였을 때 파괴확률을 추정할 수 있는 기법을 제시하였다. 교량 구조계는 지진하중이 작용할 때 이중선형 이력거동을 보이는 단자유도 진동계로서 모델링하였다. 교량의 파괴는 상단의 변위 응답이 지진 지속시간 동안 정해진 한계 상태 값을 최초로 넘어설 때 발생하는 것으로 정의하였다. 지진하중에 대한 비선형 구조계의 최초통과확률을 추정하기 위하여, 단위시간 동안 한계상태를 넘어서는 빈도수를 계산하는 crossing theory를 적용하였다. 단위시간 동안의 한계상태 초과 빈도수 추정을 위하여 필요한, 비선형 구조계의 응답과 응답의 미분값 간의 결합확률밀도함수를 추정하기 위한 기법으로서, Non-Gaussian closure 기법을 제시하였다. 다양한 지반운동 특성을 가지는 다수의 인공지진 가속도 시간이력을 생성하여 교량의 동적 특성에 따른 파괴확률을 추정하였다. 제시된 기법을 사용한 결과 얻어진 파괴확률 값을 crude Monte-Carlo 시뮬레이션을 통하여 얻어진 정해 및 기존의 방법을 적용하여 얻어진 파괴확률 값과 비교함으로써 제시된 파괴확률 추정 기법의 정확성과 효율성을 검증하였다.

Keywords

References

  1. 교량설계핵심기술연구단, “교량해석 및 설계 선진화 – 교량의 응답제어기술 개발,” 보고서, 건설교통부, 2004.
  2. Schueller, G.I., and Stix, R., “A critical appraisal of methods to determine failure probabilities,” Structural Safety, Vol. 4, No. 4, 293-309, 1987. https://doi.org/10.1016/0167-4730(87)90004-X
  3. Engulund, S., and Rackwitz, R., “A benchmark study on importance sampling techniques in structural reliability,” Structural Safety, Vol. 12, No. 4, 255-276, 1993. https://doi.org/10.1016/0167-4730(93)90056-7
  4. Schueller, G.I., “Computational stochastic mechanics-recent advances,” Computers & Structures, Vol. 79, No. 22-25, 2225-2234, 2001. https://doi.org/10.1016/S0045-7949(01)00078-5
  5. Au, S.K., “Augmenting approximate solutions for consistent reliability analysis,” Probabilistic Engineering Mechanics, Vol. 22, No. 1,77-87, 2007. https://doi.org/10.1016/j.probengmech.2006.08.004
  6. Au, S.K., and Beck, J.L., “First excursion probabilities for linear systems by very efficient importance sampling,” Probabilistic Engineering Mechanics, Vol. 16, No. 3, 193-207, 2001. https://doi.org/10.1016/S0266-8920(01)00002-9
  7. Koutsourelakis, P.S., “Reliability of structures in high dimensions. Part II. Theoretical validation,” Probabilistic Engineering Mechanics, Vol. 19, No. 4, 419-423, 2004. https://doi.org/10.1016/j.probengmech.2004.05.002
  8. Shinozuka, M., Feng, M.Q., Lee, J., and Naganuma, T., “Statistical analysis of fragility curves,” Journal of Engineering Mechanics, Vol. 126, No. 12, 1224-1231, 2000. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  9. Choi, E., DeRoches, R., and Nielson, B., “Seismic fragility of typical bridges in moderate seismic zones,” Journal of Engineering Structures, Vol. 26, 187-199, 2004. https://doi.org/10.1016/j.engstruct.2003.09.006
  10. Casciati, F., Cimellaro, G.P., and Domaneschi, M., “Seismic reliability of a cable-stayed bridge retrofitted with hysteretic devices,” Computers & Structures, Vol. 86, No. 17-18, 1769-1781, 2008. https://doi.org/10.1016/j.compstruc.2008.01.012
  11. 박건우, “사장교 지진응답 제어를 위한 에너지 소산장치의 확률론적 최적설계,” 석사학위논문, 서울대학교, 2007.
  12. Rice, S.O., “Mathematical analysis of random noise,” Bell System Technology Journal, Vol. 23. 282-332, 1944. https://doi.org/10.1002/j.1538-7305.1944.tb00874.x
  13. Newland, D.E., Random vibrations, spectral & wavelet analysis, Longman Scientific & Technical, 1994.
  14. Cramer, H., “On the intersections between the trajectories of a normal stationary stochastic process and a high level,” Arkiv Mathematics, Vol. 6, 337-349, 1966. https://doi.org/10.1007/BF02590962
  15. Dunne, I.F., and Wright, J.H., “Predicting the frequency of occurrence of large roll ngles in irregular seas,” Proceeding of the Royal Institution of Naval Architects, Vol. 12, 233-2457, 1985.
  16. Roberts J.B., “First passage time for oscillators with non-linear restoring forces,” Journal of Sound and Vibrations, Vol. 56. 71-86, 1978. https://doi.org/10.1016/0022-460X(78)90571-0
  17. Roberts, J.B., “First-passage time for oscillators with nonlinear damping,” Journal of Applied Mechanics, Vol. 45. 175-180, 1978. https://doi.org/10.1115/1.3424223
  18. Roberts, J.B., and Spanos, P.D., Random vibration and statistical linearization, John Wiley & Sons, 1990.
  19. Bover, D.C.C., “Moment Equation Methods for Non-Linear Stochastic Systems”, Journal of Mathmatical Analysis and Applications, Vol. 65, 306-320, 1978. https://doi.org/10.1016/0022-247X(78)90182-8
  20. 함대기, “비선형 에너지 소산장치가 장착된 케이블지지교량의 지진하중에 대한 최초통과확률 추정기법”, 박사학위논문, 서울대학교, 2008.
  21. 고현무, 송준호, “사용기간비용 최소화에 의한 지진격리교량 의 경제성 평가,” 대한토목학회논문집, 제 19권, 제 I-4호,. 539-550, 1999.
  22. 대한토목학회, 케이블강교량설계지침, 대한토목학회, 2007.
  23. 고현무, 박관순, 송준호, “유체-구조물 상호작용을 고려한 지진격리 수조구조물의 비용효율성 평가,” 대한토목학회논문집,제 20권, 제 2-A호, 201-215, 2000.
  24. Shinozuka, M., and Deodatis, G., “Stochastic wave models for stationary and homogeneous seismic ground motion,” Structural Safety, Vol. 10, No. 1-3, 235-246, 1991. https://doi.org/10.1016/0167-4730(91)90017-4