References
- Wu, C., Oehlers, D.J., Wachl J., Glynn C., Spencer, A., Matthew, M., and Day, I., “Blast testing of RC slabs retrofitted with NSM CFRP plates,” Adv. Struct. Eng. 10(4): 397-414, 2007. https://doi.org/10.1260/136943307783239372
- Lu, B., Silva, P., Nanni, A., and Baird, J., Retrofit for blastresistant RC slabs with composite materials, Missouri; University of Missouri-Rolla; 2006.
- Muzsynski, L., and Purcell, M., “Composite reinforcement to strengthen existing structures against airblast,” J. Comp. Constr., 7; 93-97, 2003. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:2(93)
- Wu, C., Oehlers, D.J., Rebentrost, M., Leach, J., and Whittaker, A.S., “Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs,” Engineering Structures, 31: 2060-2069, 2009. https://doi.org/10.1016/j.engstruct.2009.03.020
- U.S. Department of the Army, Structures to resist the effects of accidental explosions, Technical Manual 5-1300, Nov. 1990.
- Bangash, M.Y.H., and Bangash, T., Explosion-Resistant Buildings, Springer, 2006.
- Baker, W., Cox, P., Westine, P., Kulesz, J., and Strehlow, R., Explosion hazards and evaluation, Elsevier, New York, 1983.
- Kingery, C.N., and Bulmash, G., Airblast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst, Report ARBL-TR-02555, U.S. Army BRL, Aberdeen Proving Ground, MD, 1984.
- CONWEP, Conventional Weapons Effects program, Version 2.00: US Army Engineer Waterways Experimental Station, Vicksburg, MS, USA, 1991.
- Bogosian, D., Ferritto, J., and Shi, Y., “Measuring uncertainty and conservatism in simplified blast models,” 30th Explosive safety seminar, August, Atlanta, Gerogia, 2002.
- Blanc, G. Le, Adoum, M., and Lapoujade, V., “External blast load on structures-empirical approach,” 5th European LS-DYNA Users Conference, 5c-39, 2005.
- Deshpande, V.S., and Fleck, N.A., “Isotropic constitutive models for metallic foams,” Journal of the Mechanics and Physics of Solids, 48, 1253-1283, 2000. https://doi.org/10.1016/S0022-5096(99)00082-4
- Dannemann, K. A., and J. Lankford, Jr., “High strain rate compression of closed-cell aluminum foams,” J. Materials Science, Vol. A293, 157-164, 2000.
- Mukai, T., Kanahashi, H., Miyoshi, T., Mabuchi, M., Nieh T.G., and Higashi, K., “Experimental Study of Energy Absorption in Closed-Cell Aluminum Foam Under Dynamic Loading,” Scripta Met. Vol. 40, 921, 1999. https://doi.org/10.1016/S1359-6462(99)00038-X
- Ruan, D., Lu, G., Chen, F.L., and Siores, E., “Compressive behaviour of aluminum foams at low and medium strain rates,” Composite Structures, 57, 331-336, 2002. https://doi.org/10.1016/S0263-8223(02)00100-9
- Sadot, O., Anteby, I., Harush, S., Levintant, O., Nizri, E., Ostraich, B., Schenker, A., Gal, E., Kivity, Y., and Ben-Dor, G., “Experimental Investigation of DynamicProperties of Aluminum Foams,” Journal of Structural Engineering, ASCE, August, 1226-1232, 2005.
- Li, B., Pan, T.-C., and Nair, A., “A case study of the effect of cladding panels on the response of reinforced concrete frames subjected to distant blast loadings,” Nuclear engineering and design, Vol. 239, Issue 3, 455-469, March 2009. https://doi.org/10.1016/j.nucengdes.2008.12.003
- CYMAT Corp., Technical Manual for CYMAT SmartMetalTM, 2006.
- Hanssen, A.G., Hopperstad, O.S., Langseth, M., and Ilstad, H.,“Validation of constitutive models applicable to aluminum foams,” International Journal of Mechanical Sciences, 44, 359-406, 2002. https://doi.org/10.1016/S0020-7403(01)00091-1
- Livermore Software Technology Corporation, LS-DYNA keyword user's manual, 2006.
- Livermore Software Technology Corporation, LS-DYNA Theory manual, 2006.
- Miller RE., “A continuum plasticity model for the constitutive and indentation behavior of foamed metals,” International Journal of Mechanical Sciences, 42(4), 729-754, 2000. https://doi.org/10.1016/S0020-7403(99)00021-1
- Chong, K.P., Du, R., Cao, J., Koh, and Y.H., Aluminium Foam Panel Protection Against Close Range Blast Loading, Summer Research Report, Adelaide University, 2009.
Cited by
- Mitigation of Blast Effects on Protective Structures by Aluminum Foam Panels vol.2, pp.4, 2012, https://doi.org/10.3390/met2020170
- Design of protective structures with aluminum foam panels vol.13, pp.1, 2013, https://doi.org/10.1007/s13296-013-1001-1