DOI QR코드

DOI QR Code

Evaluation of Close-Range Blast Pressure Mitigation using a Sacrificial Member

희생부재를 이용한 근거리 폭파압력 저감 효과

  • 심창수 (중앙대학교 건설환경공학과) ;
  • 윤누리 (중앙대학교 토목환경공학)
  • Published : 2010.02.28

Abstract

A sacrificial member with aluminum foam of excellent energy absorption capacity was proposed for the protection of significant structures. Parametric studies of explicit finite element analyses were performed to investigate the pressure mitigation of close-range air-blasts. The scaled distance of the blast had a range of Z=0.48~0.95 and an empirical blast load function was utilized. The analytical parameters of the aluminum foam were density, thickness and the existence of a cover sheet. Analytical results showed that the transmitted pressure can be controlled to have a similar level of yield values of the foam by using a foam with low density and higher thickness. As the blast load increased, the sacrificial member needed to have higher density and thickness. A cover sheet of the foam clearly showed its effect on the wider distribution of blast pressure. It is necessary to determine the design parameters of sacrificial foams considering different energy dissipation capacities according to the scaled distance.

주요 구조물의 방호를 위해 에너지 흡수 능력이 뛰어난 알루미늄 폼을 갖는 희생부재를 제안하였다. 근거리 폭발에 의한 집중된 폭파하중의 압력 저감에 대한 외연적 유한요소해석을 통한 변수 연구를 수행하였다. 폭발하중의 규모는 Z=0.48~0.95 수준으로 설정하였고 경험적 폭발하중을 이용하였다. 알루미늄 폼의 해석 변수는 밀도와 두께로 설정하였고 덮개 여부를 고려하였다. 해석 결과로 부터 밀도가 낮고 두께가 두꺼울수록 전달압력의 수준을 알루미늄 폼의 항복강도 수준으로 제어할 수 있고 폭발의 규모가 증가하면 높은 밀도의 두꺼운 희생부재가 필요함을 보였다. 덮개는 두께의 영향이 뚜렷하고 폭발압력을 분산시키는 효과를 나타내었다. 폭발의 수준에 따라 희생부재의 에너지 소산의 정도가 달라지기 때문에 이를 고려한 희생부재의 설계변수 설정이 필요하다.

Keywords

References

  1. Wu, C., Oehlers, D.J., Wachl J., Glynn C., Spencer, A., Matthew, M., and Day, I., “Blast testing of RC slabs retrofitted with NSM CFRP plates,” Adv. Struct. Eng. 10(4): 397-414, 2007. https://doi.org/10.1260/136943307783239372
  2. Lu, B., Silva, P., Nanni, A., and Baird, J., Retrofit for blastresistant RC slabs with composite materials, Missouri; University of Missouri-Rolla; 2006.
  3. Muzsynski, L., and Purcell, M., “Composite reinforcement to strengthen existing structures against airblast,” J. Comp. Constr., 7; 93-97, 2003. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:2(93)
  4. Wu, C., Oehlers, D.J., Rebentrost, M., Leach, J., and Whittaker, A.S., “Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs,” Engineering Structures, 31: 2060-2069, 2009. https://doi.org/10.1016/j.engstruct.2009.03.020
  5. U.S. Department of the Army, Structures to resist the effects of accidental explosions, Technical Manual 5-1300, Nov. 1990.
  6. Bangash, M.Y.H., and Bangash, T., Explosion-Resistant Buildings, Springer, 2006.
  7. Baker, W., Cox, P., Westine, P., Kulesz, J., and Strehlow, R., Explosion hazards and evaluation, Elsevier, New York, 1983.
  8. Kingery, C.N., and Bulmash, G., Airblast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst, Report ARBL-TR-02555, U.S. Army BRL, Aberdeen Proving Ground, MD, 1984.
  9. CONWEP, Conventional Weapons Effects program, Version 2.00: US Army Engineer Waterways Experimental Station, Vicksburg, MS, USA, 1991.
  10. Bogosian, D., Ferritto, J., and Shi, Y., “Measuring uncertainty and conservatism in simplified blast models,” 30th Explosive safety seminar, August, Atlanta, Gerogia, 2002.
  11. Blanc, G. Le, Adoum, M., and Lapoujade, V., “External blast load on structures-empirical approach,” 5th European LS-DYNA Users Conference, 5c-39, 2005.
  12. Deshpande, V.S., and Fleck, N.A., “Isotropic constitutive models for metallic foams,” Journal of the Mechanics and Physics of Solids, 48, 1253-1283, 2000. https://doi.org/10.1016/S0022-5096(99)00082-4
  13. Dannemann, K. A., and J. Lankford, Jr., “High strain rate compression of closed-cell aluminum foams,” J. Materials Science, Vol. A293, 157-164, 2000.
  14. Mukai, T., Kanahashi, H., Miyoshi, T., Mabuchi, M., Nieh T.G., and Higashi, K., “Experimental Study of Energy Absorption in Closed-Cell Aluminum Foam Under Dynamic Loading,” Scripta Met. Vol. 40, 921, 1999. https://doi.org/10.1016/S1359-6462(99)00038-X
  15. Ruan, D., Lu, G., Chen, F.L., and Siores, E., “Compressive behaviour of aluminum foams at low and medium strain rates,” Composite Structures, 57, 331-336, 2002. https://doi.org/10.1016/S0263-8223(02)00100-9
  16. Sadot, O., Anteby, I., Harush, S., Levintant, O., Nizri, E., Ostraich, B., Schenker, A., Gal, E., Kivity, Y., and Ben-Dor, G., “Experimental Investigation of DynamicProperties of Aluminum Foams,” Journal of Structural Engineering, ASCE, August, 1226-1232, 2005.
  17. Li, B., Pan, T.-C., and Nair, A., “A case study of the effect of cladding panels on the response of reinforced concrete frames subjected to distant blast loadings,” Nuclear engineering and design, Vol. 239, Issue 3, 455-469, March 2009. https://doi.org/10.1016/j.nucengdes.2008.12.003
  18. CYMAT Corp., Technical Manual for CYMAT SmartMetalTM, 2006.
  19. Hanssen, A.G., Hopperstad, O.S., Langseth, M., and Ilstad, H.,“Validation of constitutive models applicable to aluminum foams,” International Journal of Mechanical Sciences, 44, 359-406, 2002. https://doi.org/10.1016/S0020-7403(01)00091-1
  20. Livermore Software Technology Corporation, LS-DYNA keyword user's manual, 2006.
  21. Livermore Software Technology Corporation, LS-DYNA Theory manual, 2006.
  22. Miller RE., “A continuum plasticity model for the constitutive and indentation behavior of foamed metals,” International Journal of Mechanical Sciences, 42(4), 729-754, 2000. https://doi.org/10.1016/S0020-7403(99)00021-1
  23. Chong, K.P., Du, R., Cao, J., Koh, and Y.H., Aluminium Foam Panel Protection Against Close Range Blast Loading, Summer Research Report, Adelaide University, 2009.

Cited by

  1. Mitigation of Blast Effects on Protective Structures by Aluminum Foam Panels vol.2, pp.4, 2012, https://doi.org/10.3390/met2020170
  2. Design of protective structures with aluminum foam panels vol.13, pp.1, 2013, https://doi.org/10.1007/s13296-013-1001-1