DOI QR코드

DOI QR Code

Optically Controlled Silicon MESFET Fabrication and Characterizations for Optical Modulator/Demodulator

  • Chattopadhyay, S.N. (Department of Electrical and Computer Engineering California State University) ;
  • Overton, C.B. (Department of Electrical and Computer Engineering California State University) ;
  • Vetter, S. (Department of Electrical and Computer Engineering California State University) ;
  • Azadeh, M. (Department of Electrical and Computer Engineering California State University) ;
  • Olson, B.H. (Department of Electrical and Computer Engineering California State University) ;
  • Naga, N. El (Department of Electrical and Computer Engineering California State University)
  • 투고 : 2009.11.01
  • 심사 : 2010.09.24
  • 발행 : 2010.09.30

초록

An optically controlled silicon MESFET (OPFET) was fabricated by diffusion process to enhance the quantum efficiency, which is the most important optoelectronic device performance usually affected by ion implantation process due to large number of process induced defects. The desired impurity distribution profile and the junction depth were obtained solely with diffusion, and etching processes monitored by atomic force microscope, spreading resistance profiling and C-V measurements. With this approach fabrication induced defects are reduced, leading to significantly improved performance. The fabricated OPFET devices showed proper I-V characteristics with desired pinch-off voltage and threshold voltage for normally-on devices. The peak photoresponsivity was obtained at 620 nm wavelength and the extracted external quantum efficiency from the photoresponse plot was found to be approximately 87.9%. This result is evidence of enhancement of device quantum efficiency fabricated by the diffusion process. It also supports the fact that the diffusion process is an extremely suitable process for fabrication of high performance optoelectronic devices. The maximum gain of OPFET at optical modulated signal was obtained at the frequency of 1 MHz with rise time and fall time approximately of 480 nS. The extracted transconductance shows the possible potential of device speed performance improvements for shorter gate length. The results support the use of a diffusion process for fabrication of high performance optoelectronic devices.

키워드

참고문헌

  1. R. N. Simons and K.B. Bhasin, “Analysis OpticallyControlled Microwave /Millimeter-Wave DeviceStructures,” IEEE Trans. on Microwave Theory andTechniques, Vol. MTT-34, p. 1349, 1986. https://doi.org/10.1109/TMTT.1986.1133548
  2. J.M. Osterwalder and B.J. Rickett, “GaAsMESFET demodulates gigabit rates from GaAlAsinjection laser,” Proceeding of the IEEE, Vol. 67, p.966, 1979. https://doi.org/10.1109/PROC.1979.11368
  3. P. Chakrabarti, et al, “Switching Characteristics ofan Optically Controlled GaAs-MESFET,” IEEETrans. on Microwave Theory & Tech., Vol. MTT-42,pp. 365-375, 1994. https://doi.org/10.1109/22.277428
  4. V.K. Singh, S.N. Chattopadhyay and B.B. Pal,“Optically Controlled Characteristics in an Ion-Implanted Silicon MESFET,” Solid State Electronics,Vol. 29, pp. 707-711, 1986. https://doi.org/10.1016/0038-1101(86)90156-5
  5. S. Mishra, V.K. Singh and B.B. Pal, “Effect of Radiationand Surface Recombination on the Characteristicsof an Ion-Implanted –GaAs MESFET,”IEEE Trans. Electron Devices, Vol. 37, pp.2-10,1990. https://doi.org/10.1109/16.43794
  6. S.R. Saxena, R.B. Lohani, R.U. Khan and B.B. Pal,“Generalized dc model of GaAs optical field effecttransistor considering ion implanted profile,” OpticalEngineering, Vol. 37, No. 4, p.1343, 1998. https://doi.org/10.1117/1.601895
  7. C. Baack et al., “GaAs M.E.S.F.E.T.: A High-SpeedOptical Detector,” Electronics Letters, Vol. 13,p.193, 1977.
  8. S. Bose, et al., “Cutoff frequency and optimumnoise figure of GaAs optically controlled FET,”Microwave and Optical Technology Letters, Vol. 26,No. 5, p.279, 2000. https://doi.org/10.1002/1098-2760(20000905)26:5<279::AID-MOP1>3.0.CO;2-0
  9. R. Zulegg, “Radiation effects in GaAs FET devices,”Proceedings of the IEEE 77 (1989), p.389. https://doi.org/10.1109/5.24126
  10. H. Mizuno, “Microwave characteristics of an opticallycontrolled GaAs MESFET,” IEEE Trans. onMicrowave Theory & Tech., Vol. MTT 31, p. 596,1983. https://doi.org/10.1109/TMTT.1983.1131551
  11. J. Graffeuil, et al, “Light induced effects in GaAsFETs,” Electronics Letters. Vol. 15, p. 439, 1979. https://doi.org/10.1049/el:19790315
  12. A.A.A. DeSalles, “Optical control of GaAsMESFET’s,” IEEE Trans. Microwave Theory &Tech., Vol. MTT-31, p. 812, 1983. https://doi.org/10.1109/TMTT.1983.1131611
  13. B.B. Pal and S.N. Chattopadhyay, “Time dependentanalysis of an ion implanted GaAs OPFET,” IEEETrans. Electron Devices, Vol. 42, p. 491, 1994. https://doi.org/10.1109/16.278500
  14. C. A. Liechti, “Performance of Dual-gate GaAsMESFET’s as Gain-Controlled Low Noise Amplifiersand High Speed Modulators,” IEEE Trans. onMicrowave Theory and Techniques, Vol. MTT-23,No. 6, pp. 461-469, 1975. https://doi.org/10.1109/TMTT.1975.1128602
  15. G. Breglio, et al, “Two silicon optical modulatorsrealizable with a fully compatible bipolar process,”IEEE Journal of Selected Topics in Quantum Electronics,Vol. 4, p. 1003, 1998. https://doi.org/10.1109/2944.736098
  16. C.L. Schow, et al., “A 1-Gb/s monolithically integratedsilicon nMOS Optical Receiver,” IEEEJournal of Selected Topics in Quantum Electronics,Vol. 4, p.1035, 1998. https://doi.org/10.1109/2944.736109
  17. L. Forbes, et al, “A Model for the Channel Noise ofMESFETs Including Hot Electron Effects,” MicroelectronicsReliability, Vol. 39, pp. 1773-1786,1999. https://doi.org/10.1016/S0026-2714(99)00184-5
  18. R.A. Minasian, “Optimum Design of a 4-Gbit/sGaAs MESFET Optical Preamplifier,” Journal ofLightwave Tech., Vol. LT-5, No.3, pp.373-379, 1987.
  19. K. Kanemoto, et al., “Dependence of ion implantation:Induced defects in substrate doping,” J. Appl.Phys., Vol. 89, pp.3156-3161, 2001. https://doi.org/10.1063/1.1337080
  20. K.L. Narayanan and M. Yamaguchi, “Phosphorousion implantation in C60 for the photovoltaic applications,”J. Appl. Phys., Vol. 89, pp. 8331-8335,2001. https://doi.org/10.1063/1.1374481
  21. S. N. Chattopadhyay, et al, “Optically controlledSilicon MESFET Modeling Considering DiffusionProcess,” Journal of Semiconductor Technologyand Science, Vol. 7, No. 3, pp. 196-208, 2007. https://doi.org/10.5573/JSTS.2007.7.3.196
  22. S. Bose, et al, “Optical Radiation and TemperatureDependent Microwave Performance of OpticallyBiased GaAs Metal-Semiconductor Field EffectTransistors,” Optical. Engineering. (SPIE), Vol. 41,No. 1, pp. 190-199, 2002 https://doi.org/10.1117/1.1418009
  23. P. Chakrabarti, et al, “An Analytical model ofGaAs OPFET,” Solid State Electronics, vol. 39, no.10, pp. 1481-1490, 1996. https://doi.org/10.1016/0038-1101(96)00061-5
  24. P. Chakrabarti, et al, “An Improved Model of Ion-Implanted GaAs OPFET,” IEEE Trans. on ElectronDevices, Vol. 39, No. 9, pp.2050-2059, 1992. https://doi.org/10.1109/16.155877
  25. S.N. Chattopadhyay and B.B. Pal. “The effect ofannealing on the Switching characteristics of anion-implanted silicon MESFET,” IEEE Trans. onElectron Devices, Vol. ED-36, pp.920-929, 1989. https://doi.org/10.1109/16.299674
  26. S.N. Chattopadhyay and B.B. Pal, “Analyticalmodeling an Ion-implanted Silicon MESFET inPost-Anneal condition,” IEEE Trans. on ElectronDevices, Vol. ED-36, pp.81-87, 1989. https://doi.org/10.1109/16.21182
  27. A.H. Khalid and A.A. Rezazadeh, “Fabrication andCharacterization of Transparent-Gate Field EffectTransistors Using Indium Tin Oxide,” IEEE Proceedings– Optoelectronics, Vol. 143, No. 1, pp. 7-11, 1996. https://doi.org/10.1049/ip-opt:19960083
  28. T. Sugeta and Y. Mizushima, “High Speed PhotoresponseMechanism of a GaAs MESFET,” JapaneseJournal of Appl. Physics, Vol. 19, No. 1, pp. L27-29, 1980. https://doi.org/10.1143/JJAP.19.L27
  29. K. Kanemoto, et.al, “Dependence of ion implantation:Induced defects on substrate doping,” J. Appl.Phys. Vol.89, pp.3156-3161, 2001. https://doi.org/10.1063/1.1337080
  30. K.L. Narayanan and M. Yamaguchi, “Phosphorousion implantation in C60 for the photovoltaic applications,”J. Appl. Phys., Vol. 89, pp. 8331-8335,2001. https://doi.org/10.1063/1.1374481
  31. H. Seidel, et al. “Anisotropic Etching of Crystallinein Alkaline Solutions,” J. Electrochemical Society,Vol. 137, No. 11, pp. 3626-3632, 1990. https://doi.org/10.1149/1.2086278
  32. M.J. Madou, “Fundamentals of Microfabrication,2nd Ed.,” CRC Press, New York, 2002, p.212.
  33. R. Maboudian, R.T. Howe, “Critical Review: Adhesionin Surface Micromechanical Structures,” J.Vac. Sci. Technol. B, vol. 15 (1), p. 1, 1997. https://doi.org/10.1116/1.589247
  34. S. Sundararajan, B. Bhushan, “Static Friction andSurface roughness studies of Surface MicromachinedElectrostatic Micromotors using anAtomic Force/Friction Force Microscope,” J. Vac.Sci. Technol. A, Vol. 19, pp.1777-1785, 2001. https://doi.org/10.1116/1.1353539
  35. F. Ericson, J. A. Schweitz, “Micromechanical FractureStrength of Silicon,” J. Appl. Phys., Vol. 68,p.5840, 1990. https://doi.org/10.1063/1.346957
  36. T. Yi, C.J. Kim, “Measurement of Mechanicalproperties for MEMS materials,” Meas. Sci. Technol.,Vol. 10, pp. 706-716, 1999. https://doi.org/10.1088/0957-0233/10/8/305
  37. S. Sundararajan, B. Bhushan, et.al, “MechanicalProperty Measurements of Nanoscale Structuresusing an atomic Force Microscope,” Ultramicroscopy,Vol. 91, pp. 111-118, 2002. https://doi.org/10.1016/S0304-3991(02)00089-X
  38. F. J. Williams, C.M. Aldao, et al, “Why Si (100)Steps are Rougher After Etching,” Phy. Rev., B,Condens. Matter, Vol. 55, pp. 13829-13834, 1997. https://doi.org/10.1103/PhysRevB.55.13829
  39. T. Baum and D.J. Schiffrin, “AFM Study of SurfaceFinish Improvement by Ultrasound in the AnisotropicEtching of Si (100) in KOH for MicromachingApplications,” J. Micromechanics Microengineering,Vol. 7, pp. 338-342, 1997. https://doi.org/10.1088/0960-1317/7/4/010
  40. I. Zubel, et al, “Silicon Anisotropic etching in alkalinesolutions II On the Influence of anisotropy onthe smoothness of etched surfaces,” Journal “Sensorsand Actuators A: Physical, Vol. 70, pp. 260-268, 1998. https://doi.org/10.1016/S0924-4247(98)00142-3
  41. M. Shikida, K. Sato, et al, “Differences in anisotropicetching properties of KOH and TMAH solutions,”Journal “Sensors and Actuators A: Physical,”Vol. 80, pp.179-188, 2000. https://doi.org/10.1016/S0924-4247(99)00264-2
  42. R. Holly and K. Hingerl, “Fabrication of siliconvertical taper structures using KOH anisotropicetching,” Microelectronics Engineering, 83, 1430-1433, 2006. https://doi.org/10.1016/j.mee.2006.01.078
  43. A. Tabe, A. Uchiyama, et.al in Proceedings of the1st International Symposium on Semiconductorswafer bonding: Science and Technology, and Applications,U. Gosels, T, Abe, J. Haisma and M.A.Schmidt, Editors, PV 92-7, p 200, The ElectrochemicalSociety Proceedings Series, NJ (1992).
  44. W.P. Maszara, B-L. Jiang et.al, “Role of SurfaceMorphology in Wafer Bonding,” J. Appl. Phys. Vol.69, p.257, 1991. https://doi.org/10.1063/1.347760
  45. H. Angermann and Carola Klimn, “Wet-chemicaltreatment and electronic interface properties of siliconsolar cell,” Central European Journal of Physics,Vol. 7, 2, pp.363-370, 2009. https://doi.org/10.2478/s11534-009-0055-3
  46. J.D. Hylton, A.R. Burgers and W.C. Sinke, “Alkalineetching of Reflectance reduction in multicrysttalinesilicon solar cells,” Journal of the ElectrochemicalSociety, Vol. 151, Issue 6, pp.G408-G427,2004. https://doi.org/10.1149/1.1738137
  47. S.K. Ghandhi, “VLSI Fabrication Principles – Siliconand Gallium Arsenide, 2nd Ed.,” 1994, JohnWilley & Sons, Inc.
  48. D.K. Schroder, et al, “Free Carrier Absorption inSilicon,” IEEE Trans. On Electron Devices, Vol.ED-25, No. 2, pp. 254-261, 1978. https://doi.org/10.1109/T-ED.1978.19066

피인용 문헌

  1. Room-temperature electroluminescence from germanium in an Al_03Ga_07As/Ge heterojunction light-emitting diode by Γ-valley transport vol.20, pp.14, 2012, https://doi.org/10.1364/OE.20.014921
  2. Analytical Model of Double Gate MOSFET for High Sensitivity Low Power Photosensor vol.13, pp.5, 2013, https://doi.org/10.5573/JSTS.2013.13.5.500
  3. Process Considerations for 80-GHz High-Performance p-i-n Silicon Photodetector for Optical Interconnect vol.12, pp.3, 2012, https://doi.org/10.5573/JSTS.2012.12.3.370