• Title/Summary/Keyword: spectral responsivity

Search Result 25, Processing Time 0.027 seconds

Measurement of Solar Cell Using LED-based Differential Spectral Responsivity Comparator under High Background Irradiance

  • Zaid, Ghufron;Park, Seong-Chong;Lee, Dong-Hoon;Park, Seung-Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.293-294
    • /
    • 2009
  • The spectral responsivity of solar cells has been measured under high background irradiance using an LED-based differential spectral responsivity Comparator (DSR-C). The comparator developed is fully automated and has some advantages: It does not need a chopper to modulate the light. Unlike the conventional method, it does not require a monochromator to select wavelength. It covers a wavelength range up to 1200 nm. The wavelength range of the comparator is limited by the spectral power distribution of the LEDs and the spectral responsivity of the standard detector. An active temperature control was utilized to meet the specified standard conditions of solar cell test. This work shows the effect of different levels of background irradiance on the spectral responsivity and the importance of same background irradiance for solar cell test as specified by the corresponding standard.

  • PDF

Characteristics of Photodetectors for spectral radiance measurements (분광복사휘도 측정용 광검출기의 특성 평가)

  • 서정철;박승남;김봉학
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.376-381
    • /
    • 2001
  • We have fabricated a spectroadiometric system to measure spectral radiance of optical sources and evaluated its characteristics such as spectral responsivity, nonlinearity, and so on. The measurement system with PMT, Si, InGaAs, and IR-enhanced InGaAs detectors has shown a good linearity and a wide spectral responsivity of 250∼2500 nm. This spectroradiometric system will be used as the primary national standard system of spectral radiance measurements.

  • PDF

Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer

  • Shafian, Shafidah;Jang, Yoonhee;Kim, Kyungkon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.348-348
    • /
    • 2016
  • Low dark current (off-current) and high photo current are both essential for a solution processed organic photodetector (OPD) to achieve high photo-responsivity. Currently, most OPDs utilize a bulk heterojunction (BHJ) photo-active layer that is prepared by the one-step deposition of a polymer:fullerene blend solution. However, the BHJ structure is the main cause of the high dark current in solution processed OPDs. It is revealed that the detectivity and spectral responsivity of the OPD can be improved by utilizing a photo-active layer consisting of an interdiffused polymer/fullerene bilayer (ID-BL). This ID-BL is prepared by the sequential solution deposition (SqD) of poly(3-hexylthiophene) (P3HT) and [6,6] phenyl C61 butyric acid methyl ester (PCBM) solutions. The ID-BL OPD is found to prevent undesirable electron injection from the hole collecting electrode to the ID-BL photo-active layer resulting in a reduced dark current in the ID-BL OPD. Based on dark current and external quantum efficiency (EQE) analysis, the detectivity of the ID-BL OPD is determined to be $7.60{\times}1011$ Jones at 620 nm. This value is 3.4 times higher than that of BHJ OPDs. Furthermore, compared to BHJ OPDs, the ID-BL OPD exhibited a more consistent spectral response in the range of 400 - 660 nm.

  • PDF

Study on the First On-Orbit Solar Calibration Measurement of Ocean Scanning Multi-spectral Imager (OSMI)

  • Cho, Young-Min
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • The ocean Scanning Multi-spectral Imager (OSMI) is a payload on the KOrea Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring f the study of biological oceanography. OSMI performs solar and dark calibrations for on-orbit instrument calibration. The purpose of the solar calibration is to monitor the degradation of imaging performance for each pixel of 6 spectral bands and to correct the degradation effect on OSMI image during the ground station date processing. The design, the operation concept, and the radiometric characteristics of the solar calibration are investigated. A linear model of image response and a solar calibration radiance model are proposed to study the instrument characteristics using the solar calibration data. The performance of spectral responsivity and spatial response uniformity. The first solar calibration data and the analysis results are important references for further study on the on-orbit stability of OSMI response during its lifetime.

Fabrication and Performance Test of TGS Pyroelectric Detectors (TGS 초전검출기 제작 및 성능검사)

  • 김석원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.230-234
    • /
    • 1989
  • Pyroelectric TGS(triglycine sulfate) detectors, whose thicknesses are 0.1mm and 0.2 mm, are fabricated using the grown TGS crystals from aqueous solution. The outut power and noise from these detectors are measured as a function of chopping frequency in the range from 10Hz to 160Hz with the interval of 10Hz. Response time, responsivity and detectivity are derived from the measured output power and noise of the detectors. The results show that the response time is about 15ms, resposivity is 100V/W at 10Hz and the detectivity at the maximum spectral wavelength D{{{{ lambda }}P* is about 10 cmHz1/2w-1.

  • PDF

Realization of the national standard of candela traceable to the absolute cryogenic radiometer at KRISS (극저온 절대복사계에 소급한 칸델라 국가표준 실현)

  • Park, Seung-Nam;Kim, Yong-Wan;Lee, Dong-Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.443-448
    • /
    • 2004
  • We realized the national standard of the candela, one of the SI units, by using two photometers with the spectral responsivity measured in reference to the absolute cryogenic radiometer. The external apertures of the photometers were fabricated using a diamond turning machine, and measured in terms of area with uncertainty of 0.05 %(k = 1). The candela is realized using a 1 kW FEL lamp and the characterized photometers on an optical bench. The uncertainty is budgeted to be 0.25 %(k = 1) considering the uncertainty of the spectral responsivity and the response uniformity of the detectors, the area of the external apertures, the color temperature of the lamp, and the positioning reproducibility of the photometers and the lamp. We verified the realized scale by comparing with the scale of National Institute of Standards and Technology, USA. They coincided with each other within 0.1%.

Radiometric Calibration of FTIR Spectrometer For Passive Remote Sensing Application (수동형 원격탐지 FTIR 분광계의 Radiometric Calibration)

  • Kim, Dae-Sung;Park, Do-Hyun;Choi, Seung-Ki;Ra, Sung-Woong
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.391-395
    • /
    • 2006
  • In this paper, radiometric calibration of a FTIR spectrometer for passive remote sensing application was introduced and verified. Radiometric calibration is a significant signal processing procedure to retrieve the object radiance from the measured spectrum. The object radiance is measured and registered distorted by the detector's responsivity dependent on wavelength and instrument self-emission. Radiance of two temperature points, hot temperature and cold temperature, from a well-controlled blackbody was measured and used to obtain the scale factor and offset factor which are required for radiometric calibration. For gas phase C2H5OH. radiometric calibration was done and verified through comparison of its emission line width and intensity with the standard spectrum.

Fabrication and Characteristics Study of $n-Bi_2O_3$/n-Si Heterojunction

  • Ismail, Raid A.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.119-123
    • /
    • 2006
  • This work presents the fabrication and characteristics of $Bi_2O_3/Si$ heterojunction prepared by rapid thermal oxidation technique without any postdeposition annealing condition. The bismuth trioxide film was deposited onto monocrystalline Si and glass substrates by rapid thermal oxidation of bismuth film with aid of halogen lamp at $500^{\circ}C/\;45$ s in static air. The structural, optical and electrical properties of $Bi_2O_3$ film were investigated and compared with other published results. The structural investigation showed that the grown films are polycrystalline and multiphase (${\alpha}-Bi_2O_3$ and ${\beta}-Bi_2O_3$). Optical properties revealed that these films having direct optical band gap of 2.55 eV at 300 K with high transparency in visible and NIR regions. Dark and illuminated I-V, CV, and spectral responsivity of $Bi_2O_3/Si$ heterojunction were investigated and discussed.

A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system

  • Lee, Heon-Bok;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.346-349
    • /
    • 2008
  • A metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) is proposed as an effective UV sensing device for integration with a GaN n-channel MISFET on auto-doped p-type GaN grown on a silicon substrate. Due to the high hole barrier of the metal-p-GaN contact, the dark current density of the fabricated MSM PD was less than $3\;nA/cm^2$ at a bias of up to 5 V. Meanwhile, the UV/visible rejection ratio was 400 and the cutoff wavelength of the spectral responsivity was 365 nm. However, the UV/visible ratio was limited by the sub-bandgap response, which was attributed to defectrelated deep traps in the p-GaN layer of the MSM PD. In conclusion, an MSM PD has a high process compatibility with the n-channel GaN Schottky barrier MISFET fabrication process and epitaxy on a silicon substrate.