직접 수송 루프에서 아이스슬러리의 열전달 특성에 관한 실험적 연구

Experimental Study on Heat Transfer Characteristics of Ice Slurry at Direct Transportation Loop

  • 이동원 (한국에너지기술연구원) ;
  • 김정배 (충주대학교 에너지시스템공학과)
  • 투고 : 2010.10.07
  • 심사 : 2010.11.04
  • 발행 : 2010.12.31

초록

원형 파이프를 유동하는 6.5% EG 수용액으로부터 만들어진 아이스슬러리의 열전달 특성을 분석하기 위한 실험을 수행하였다. 실험 장치의 시험부는 13.84 mm 내경과 1,500 mm의 길이를 가진 동관으로 제작되었다. 아이스슬러리는 시험부 주변에 이중관 형태로 만들어진 원형관 내부를 유동하는 온수에 의해 가열되었다. 본 연구의 실험에 적용된 IPF와 질량 유속은 각각 0 ~ 25% 그리고 1000 ~ 3,000 kg/$m^2s$의 범위이었고, 온수의 온도와 유량은 일정하게 유지하였다. 측정된 열전달량은 질량 유량과 IPF가 증가함에 따라 증가하였으나, IPF의 영향은 높은 질량 유량에서는 작은 것으로 나타났다. 낮은 질량유량에서는 열전달 계수의 급격한 상승이 15 ~ 20%의 IPF에서 나타났다. 마지막으로 측정된 열전달계수는 기존의 열전달상관식들에 의해 계산된 열전달계수와 비교하여 제시하였다.

Heat transfer characteristics were experimentally investigated for ice slurry which was made from 6.5% ethylene glycol-water solution flowing in the circular pipe. The test section was made of a copper tube of 13.84 mm inner diameter and 1,500 mm length. The ice slurry was heated by passing hot water through an annulus surrounding the test section. The ice packing factor(IPF) and the mass flux of the experiments were varied from 0 to 25% and from 1,000 to 3,000 kg/$m^2s$ respectively at a fixed hot water temperature and flow rate. The measured heat transfer rates increase with the mass flow rate and IPF; however the effect of IPF appears to be minor at high mass flow rate. At the low mass flow rate condition, a sharp increases in the heat transfer coefficient was observed when the IPF was above 15 ~ 20%. And finally the measured heat transfer coefficients were compared with those calculated from the correlations.

키워드

참고문헌

  1. Lee, D. W., 2001, Cold heat transportation using ice slurry, The Magazine of the SAREK, Vol. 30, No. 12, pp. 8-14.
  2. Lee, D. W., Yoon, C. I. and Yoon, E. S., 2002, Experimental study on flow patterns and pressure drop characteristics of ice slurry in small size pipe(1), (2), Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 14, No. 5, pp. 385-397.
  3. Inaba, H., Horibe, A., Ozaki, K. and Yokota, M., 1997, Study of cold energy release characteristics of flowing ice water slurry in a pipe, Trans. of the JSRAE, Vol. 14, No. 3, pp. 265-276.
  4. Kawanami, T., Fukusako, S. and Yamada, M., 2001, Forced convection heat transfer characteristics of ice slurry at the bending section of flow path, Proceedings of the 4th Workshop on Ice slurries of IIR, pp. 165-174.
  5. Knodel, B. D., France, D. M., Choi, U. S. and Wambsganss, M. W., 2000, Heat transfer and pressure drop in ice-water slurries, Applied Thermal Engineering, Vol. 20, pp. 671-685. https://doi.org/10.1016/S1359-4311(99)00046-0
  6. Gil, B. I., Lee, Y. P., Jung, D. J., Cho, B. H. and Choi, E. S., 2001, A study on transport and heat utilization of ice slurries, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 13, No. 11, pp. 1065-1071.
  7. Lee, D.W., Yoon, E.S., Joo, M.C., and Sharma, A., 2006, Heat transfer characteristics of the ice slurry at melting process in a tube flow, International Journal of Refrigeration, Vol. 29, pp. 451-455. https://doi.org/10.1016/j.ijrefrig.2005.10.003