Cathode materials advance in solid oxide fuel cells

고체산화물연료전지 공기극의 재료개발동향

  • Received : 2010.03.23
  • Accepted : 2010.06.10
  • Published : 2010.06.30

Abstract

A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

고체산화물연료전지(SOFC)는 청정에너지기술로써 화학에너지를 전기에너지로 직접 전환한다. SOFC는 열병합발전과 결합하여 80%이상의 효율을 올릴 수 있으며 천연가스와 바이오가스 등 연료에 대한 융통성이 폴리머전해질막연료전지(PEMFC)보다 높다. YSZ전해질과 함께 SOFC에 주로 채용되는 공기극 재료는 아직까지 Sr이 첨가된 $LaMnO_3$(LSM)이다. LSM 이외에, 혼합전도성을 가지는 페로브스카이트로서 Sr첨가 $LaCoO_3$(LSCo), $LaFeO_3$(LSF), $LaFe_{0.8}Co_{0.2}O_3$(LSCF)는 공기극 임피던스가 LSM에 비해 현저히 낮아 연구가 증가하고 있다. 그러나 SOFC전극의 소결온도에서 YSZ과 고체반응을 일으키는 문제점과 열팽창 계수가 YSZ와 격차가 크게 나는 문제점 때문에 전극 제조가 복잡하다. 따라서 전해질과의 화학적 안정성 및 유사한 열팽창계수(TEC)를 가지면서 우수한 전기화학활성을 제공하는 것이 해결해야할 중요한 문제로 남는다.

Keywords

References

  1. S.C. Singhal, Solid Oxide Fuel Cells VI, PV 99-19, The Electrochemical Society, Inc., Pennington, NJ, USA, 1999, 39-51.
  2. Harumi Yokokawa, Hengyong Tu, Boris Iwanschitz, Andreas Maic, Journal of Power Sources 2008, 182, 400-412. https://doi.org/10.1016/j.jpowsour.2008.02.016
  3. Sun C, Stimming U, J Power Sources 2007, 171:247. https://doi.org/10.1016/j.jpowsour.2007.06.086
  4. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam.
  5. H. Yokokawa, H. Tu, B. Iwanschitz, A. Mai, J. Power Sources 2008, 182, 400. https://doi.org/10.1016/j.jpowsour.2008.02.016
  6. Kendall K, Int Mater Rev 2005, 50:257. https://doi.org/10.1179/174328005X41131
  7. TakedaY, Tu HY, SakakiH,Watanabe S, ImanishiN, Yamamoto O, Phillipps MB, Sammes NM, J Electrochem Soc 1997, 144:2810. https://doi.org/10.1149/1.1837899
  8. Kharton VV, Yaremchenko AA, Naumovich EN, J Solid State Electrochem 1999, 3:303. https://doi.org/10.1007/s100080050161
  9. Huang X, Liu J, Lu Z, Liu W, Pei L, He T, Liu Z, Su W, Solid State Ionics, 2000, 130:195. https://doi.org/10.1016/S0167-2738(00)00643-3
  10. V. A. C. Haanappel, J. Mertens, A. Mai, J. Fuel Cell Sci. Technol. 2006, 3, 263. https://doi.org/10.1115/1.2205359
  11. T. J. Armstrong, A. V. Virkar, 204th Meeting of the Electrochemical Society, Electrochemical Society, Pennington, N.J. 2003, Abstract 1113.
  12. T. Z. Sholklapper, C. Lu, C. P. Jacobson, S. J. Visco, L. C. De Jonghe, Electrochem. Solid-State Lett. 2006, 9, A376. https://doi.org/10.1149/1.2206011
  13. W. Wang, M. D. Gross, J. M. Vohs, R. J. Gorte, J. Electrochem. Soc. 2007, 154, B439. https://doi.org/10.1149/1.2709510
  14. T. Z. Sholklapper, V. Radmilovic, C. P. Jacobson, S. J. Visco, L. C. De Jonghe, Electrochem. Solid-State Lett. 2007, 10, B74. https://doi.org/10.1149/1.2434203
  15. Yasumoto K, Mori N, Mizusaki J, Tagawa H, Dokiya M, J Electrochem Soc 2001, 148:A105. https://doi.org/10.1149/1.1344524
  16. Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Iio M, Esaki Y, Solid State Ionics 1999, 118:187. https://doi.org/10.1016/S0167-2738(98)00440-8
  17. Y. Huang, J. M. Vohs, R. J. Gorte, J. Electrochem. Soc. 2006, 153, A951. https://doi.org/10.1149/1.2186183
  18. Y. Huang, J. M. Vohs, R. J. Gorte, J. Electrochem. Soc. 2005, 152, A1347. https://doi.org/10.1149/1.1926669
  19. S. McIntosh, S. B. Adler, J. M. Vohs, R. J. Gorte, Electrochem. Solid-State Lett. 2004, 7, A111. https://doi.org/10.1149/1.1667792
  20. Ekaterina V. Tsipis & Vladislav V. Kharton, J Solid State Electrochem, 2008, 12:1367-1391. https://doi.org/10.1007/s10008-008-0611-6
  21. Bronin DI, Kuzin BL, Yaroslavtsev IY, Bogdanovich NM, J Solid State Electrochem, 2006, 10:651. https://doi.org/10.1007/s10008-006-0128-9
  22. Kharton VV, Patrakeev MV, Waerenborgh JC, Kovalevsky AV, Pivak YV, Gaczynski P, Markov AA, Yaremchenko AA, J Phys Chem Solids, 2007, 68:355. https://doi.org/10.1016/j.jpcs.2006.11.023
  23. F. Bidrawn, S. Lee, J.M.Vohs, R. J.Gorte, J. Electrochem. Soc.2008, 155,B660. https://doi.org/10.1149/1.2907431
  24. E. V. Tsipis, M. V. Patrakeev, V. V. Kharton, A. A. Yaremchenko, G. C. Mather, A. L. Shaula, I. A. Leonidov, V. L. Kozhevnikov, J. R. Frade, Solid State Sci. 2005, 7, 355. https://doi.org/10.1016/j.solidstatesciences.2005.01.001
  25. S. P. Simner, J. P. Shelton, M. D. Anderson, J. W. Stevenson, Solid State Ionics 2003, 161, 11. https://doi.org/10.1016/S0167-2738(03)00158-9
  26. Lein HL, Wiik K, Grande T (2006) Solid State Ionics 177:1795. https://doi.org/10.1016/j.ssi.2006.02.033
  27. Zajac W, wierczek K, Molenda J (2007) J Power Sources 173:675. https://doi.org/10.1016/j.jpowsour.2007.05.053
  28. Park CY, Jacobson AJ (2005) Solid State Ionics 176:2671. https://doi.org/10.1016/j.ssi.2005.08.003
  29. Petrov AN, Cherepanov VA, Zuev AYu (2006) J Solid State Electrochem 10:517. https://doi.org/10.1007/s10008-006-0124-0
  30. T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, E. Ivers-Tiffee, Electrochim. Acta 2001, 46, 1837. https://doi.org/10.1016/S0013-4686(00)00722-2
  31. S. B. Adler, X. Y. Chen, J. R. Wilson, J. Catal. 2007, 245, 91. https://doi.org/10.1016/j.jcat.2006.09.019
  32. Ekaterina V. Tsipis & Vladislav V. Kharton, J Solid State Electrochem, 2008, 12:1367-1391. https://doi.org/10.1007/s10008-008-0611-6
  33. Ishihara T, Fukui S, Nishiguchi H, Takita Y, Solid State Ionics, 2002, 152.153:609. https://doi.org/10.1016/S0167-2738(02)00394-6
  34. Poznyak SK, Kharton VV, Frade JR, Yaremchenko AA, Tsipis EV, Yakovlev SO, Marozau IP, J Solid State Electrochem, 2008, 12:15.
  35. Kharton VV, Naumovich EN, Vecher AA, Nikolaev AV, J Solid State Chem 1995, 120:128. https://doi.org/10.1006/jssc.1995.1387
  36. Yokokawa H, Sakai N, Horita T, Yamaji K, Brito ME, Kishimoto, H, J Alloys Compd 2008, 452:41. https://doi.org/10.1016/j.jallcom.2006.12.150
  37. C. Rossignol, J. M. Ralph, J.-M. Bae, J. T. Vaughey, Solid State Ionics 2004, 175, 59. https://doi.org/10.1016/j.ssi.2004.09.021
  38. N. Q. Minh, J. Am. Ceram. Soc. 1993, 76, 563. https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  39. T. J. Armstrong, J. G. Rich, J. Electrochem. Soc. 2006, 153, A515. https://doi.org/10.1149/1.2163814
  40. Y. Huang, K. Ahn, J. M. Vohs, R. J. Gorte, J. Electrochem. Soc. 2004, 151, A1592. https://doi.org/10.1149/1.1789371
  41. M. Sase, D. Ueno, K. Yashiro, A. Kaimai, T. Kawada, J. Mizusaki, J. Phys. Chem. Solids 2005, 66, 343. https://doi.org/10.1016/j.jpcs.2004.06.057
  42. Hayashi H, Suzuki M, Inaba H, Solid State Ionics, 2000, 128:131. https://doi.org/10.1016/S0167-2738(99)00346-X
  43. Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O, J Electrochem Soc 1987, 134:2656. https://doi.org/10.1149/1.2100267
  44. Jiang SP, Solid State Ionics 2002, 146:1. https://doi.org/10.1016/S0167-2738(01)00997-3
  45. S. Lee, K. S. Lee, S. K. Woo, J. W. Kim, T. Ishihara, D. K. Kim, Solid State Ionics 2003, 158, 287. https://doi.org/10.1016/S0167-2738(02)00821-4
  46. A. Mai, M. Becker, W. Assenmacher, F. Tietz, D. Hathiramani, E. Ivers-Tiffee, D. Stover, W. Mader, Solid State Ionics 2006, 177, 1965. https://doi.org/10.1016/j.ssi.2006.06.021
  47. J. Chen, F. Liang, L. Liu, S. P. Jiang, B. Chi, J. Pu, J. Li, J. Power Sources 2008, 183, 586. https://doi.org/10.1016/j.jpowsour.2008.05.082
  48. Y. Huang, J. M. Vohs, R. J. Gorte, J. Electrochem. Soc. 2004, 151, A646. https://doi.org/10.1149/1.1652053
  49. Kostogloudis GC, Ftikos C, Solid State Ionics, 1999, 126:143. https://doi.org/10.1016/S0167-2738(99)00230-1