DOI QR코드

DOI QR Code

Changes of Chemical Components of Fermented Tea during Fermentation Period

미생물을 이용한 후발효차의 발효기간별 화학성분 변화

  • Kim, Yong-Shik (Dept. of Food Science and Technology, Chungju National University) ;
  • Choi, Goo-Hee (Dept. of Food Science and Technology, Chungju National University) ;
  • Lee, Kyung-Haeng (Dept. of Food Science and Technology, Chungju National University)
  • 김용식 (충주대학교 식품공학과) ;
  • 최구희 (충주대학교 식품공학과) ;
  • 이경행 (충주대학교 식품공학과)
  • Received : 2010.09.10
  • Accepted : 2010.10.08
  • Published : 2010.12.31

Abstract

To manufacture the fermented tea with hygienic quality, green tea was fermented using Bacillus subtilis, Saccharomyces cerevisiae and Lactobacillus bulgaricus and chemical composition and sensory changes were evaluated during fermentation period. The lightness of the fermented samples decreased; in contrast, redness and yellowness increased. Especially, the color change of the fermented tea using B. subtilis was higher than those of control and other samples with different microorganisms during fermentation period. Chlorophyll contents were decreased by similar level regardless of fermentation treatments. The fastest decrease of total catechins contents were found in the tea fermented with B. subtilis and significantly reduced by increase of fermentation period. However, total catechin contents of the tea fermented by L. bulgaricus were not decreased. The caffeine contents of the microbial fermented teas were more decreased than that of control, even though the decrease was slight. Sensory panelists preferred the tea fermented by B. subtilis to those of control or other fermentation treatment.

안전성이 확보된 후발효차를 제조하기 위해 Bacillus subtilis, Saccharomyces cerevisiae 및 Lactobacillus bulgaricus를 이용하여 후발효차를 제조한 후 발효 시간에 따른 화학성분의 변화와 관능적 기호도의 변화를 측정하였다. 발효 진행 정도에 따른 색상변화에서는 lightness는 감소하고 redness와 yellowness는 모두 증가하였으며 특히 B. subtilis에 의한 후발효차 제조 시 가장 많은 수색의 변화를 보였다. Chlorophyll의 함량변화에서는 발효가 진행됨에 따라 균종에 관계없이 모두 비슷한 수준으로 감소하였다. 총 카테킨의 함량변화에서는 B. subtilis균의 발효에 의하여 카테킨의 함량이 가장 많이 감소하는 것으로 나타났으며 발효기간이 증가할수록 유의적으로 낮은 함량을 나타내었다. 그러나 L. bulgaricus균에 의한 발효에서는 카테킨의 함량은 감소하지 않았다. Caffeine 함량변화에서는 모든 발효차에서 발효전의 함량보다는 다소 감소하였지만 많은 함량의 변화는 없는 것으로 나타났다. 발효기간별 관능검사 결과에서는 색, 향, 맛 및 종합적 기호도 모두 B. subtilis를 이용한 후발효차가 가장 우수한 것으로 나타났다.

Keywords

References

  1. Ma SJ. 2008. Korean fermented tea research and prospect. Bosung tea symposium, Bosung, Korea. p 53-64.
  2. Kim SH, Park J, Lee LS, Han DS. 1999. Effect of pH on the green tea extraction. Korean J Food Sci Technol 31:1024-1028.
  3. Kim JT. 1996. Science and culture of green tea. Borim publisher, Paju, Korea. p 8-261.
  4. Jung DH, Kim JT. 2003. Science of tea. Daekwang publisher,Jeonju, Korea. p 51-53.
  5. Alschuler L. 1998. Green tea: Healing tonic. Am J Nat Med5: 28-31.
  6. Dullo AG, Duret C, Rohrer D. 1999. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation and fat oxidation in humans. Am J Clin Nutr 70: 1040-1045. https://doi.org/10.1093/ajcn/70.6.1040
  7. Beltz LA, Bayer DK, Moss AL, Simet IM. 2006. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med Chem 389-406: 389-406. https://doi.org/10.2174/187152006778226468
  8. Son GM, Bae SM, Jung JY, Sin DJ, Sung TS. 2005. Antioxidative effect on the green tea and puer tea extracts. Korean J Food & Nutr 18: 219-224.
  9. Choi OJ, Choi KH. 2003. The physicochemical properties of Korean wild teas (green tea, semi-fermented tea, and black tea) according to degree of fermentation. J Korean Soc Food Sci Nutr 32: 356-362. https://doi.org/10.3746/jkfn.2003.32.3.356
  10. KFDA. 2007. Study of the safety evaluation for fermentation tea. Korea Food & Drug Administration, Seoul, Korea.
  11. Son SG, Je SM, Woo SY, Byun KO, Kang YJ, Kwang BS. 2006. Physiological differences of Ilex rotunda and Illicium anisatum under low light intensities. Korean J Agric Forest Meteorol 8: 61-67.
  12. Chun JU, Choi KS. 2007. Nondestructive and rapid method for measurement of catechin contents in green tea products using NIRS. J Korean Tea Soc 13: 99-112.
  13. KFDA. 2005. Analysis method of food additive. Korea Food & Drug Administration, Seoul, Korea.
  14. Shin KH. 2002. A study on the change of chemical composition and the effect of antibacterial activity by the degree fermentation in Korean tea. MS Thesis. Sunchon NationalUniversity, Jeonnam, Korea.
  15. Jo KH, Pae YR, Yang EN, Park EJ, Ma SJ, Park YS, Chung DO, Jung ST. 2006. Major constituents and bioactivities of tea products by various manufacturing. Korean J Food Preserv 13: 596-602.
  16. Park JH, Choi HK, Park KH. 1998. Chemical components of various green teas on market. J Korean Tea Soc 4: 83-92.
  17. Lin JK, Lin CL, Liang YC, Lin-Shiau SY, Juan IM. 1998. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J Agric Food Chem 46: 3635–3642.
  18. Jeong CH, Kang ST, Joo OS, Lee SC, Shin YH, Shim KH, Cho SH, Choi SG, Heo HJ. 2009. Phenolic content, antioxidant antioxidant effect and acetylcholinesterase inhibitory activityof Korean commercial green, puer, oolong and black teas. Korean J Food Preserv 16. 230-237.
  19. Lee YJ, Ahn MS, Hong KH. 1998. A study on the contentof general compounds, amino acid, vitamins, catechins, alkaloidsin green, oolong and black tea. J Fd Hyg Safety13: 377-382.
  20. Liang Y, Zhang L, Lu J. 2005. A study on chemical estimationof pu-erh tea quality. J Sci Food Agric 85: 381-390. https://doi.org/10.1002/jsfa.1857
  21. Shin MK. 1994. The science of green tea. Korean J Food Culture 9: 433-445.
  22. Davis PN. 1990. Various effects of caffeine upon the body. Int Clin Nutr Rev 10: 333-339.

Cited by

  1. Changes of Nutrient Composition and Antioxidative Activities of Fermented Tea during Fermentation vol.26, pp.3, 2013, https://doi.org/10.9799/ksfan.2013.26.3.398
  2. Changes of Antioxidative Components and Activity of Fermented Tea during Fermentation Period vol.40, pp.8, 2011, https://doi.org/10.3746/jkfn.2011.40.8.1073
  3. Analysis of Microbial Metabolites of Fermented Tea prepared with Aspergillus sp. B3 vol.31, pp.2, 2010, https://doi.org/10.17495/easdl.2021.4.31.2.133