DOI QR코드

DOI QR Code

Effect of Ecklonia stolonifera Extracts on Bone Turnover Markers in Ovariectomized Rats

곰피가 갱년기 장애 유도 흰쥐의 골 대사 지표물질의 변화에 미치는 영향

  • 김영경 (신라대학교 식품영양학과) ;
  • 김미향 (신라대학교 식품영양학과)
  • Received : 2010.10.11
  • Accepted : 2010.12.07
  • Published : 2010.12.31

Abstract

Menopause is often associated with the incidence of several chronic diseases including osteoporosis, cardiovascular disease, and obesity. The purpose of this study was designed to evaluate the possibility of osteoporosis prevention in postmenopausal women. In this study, we investigated the effects of Ecklonia stolonifera (ES) extracts on bone turnover markers in ovariectomized rats. For this study, the following four groups of 9-week-old Sprague-Dawley rats were evaluated over 6 weeks: normal rats (SHAM), ovariectomized rats (OVX-CON) and ovariectomized rats that were treated with ES extracts. We measured the osteocalcin and C-telopeptide of collagen cross-links (CTx) content, enzyme ALP activity in serum and collagen content in the cartilage, bone, skin and lungs. We found that the levels of indicators of bone metabolism such as alkaline phosphatase (ALP), osteocalcin and CTx were lower in rats in the ES extract group than the OVX-CON group. In addition, the collagen contents in the bone, cartilage, skin and lungs decreased in response to ovariectomy, but the levels of collagen were greater in the bone of rats that were treated with ES extract than in the bone of rats in the OVX-CON group. These results suggest that the ES may be an effective functional food to prevent osteoporosis in postmenopausal women.

갱년기 여성에는 여러 폐경 증후들이 나타나는데, 특히 에스트로겐의 감소로 인한 혈중 지질 조성의 변화 등으로 심혈관계 질환의 발병율이 급격히 증가하는 경향을 보이고 있으며, 또한 급격한 골 소실로 인한 골다공증의 위험성이 높아 이에 대한 예방 및 치료에 대한 연구가 활발히 이루어지고 있다. 본 연구에서는 갈조류인 곰피 추출물을 시료로하여 in vivo 실험을 통하여 갱년기 장애 시 나타날 수 있는 골 손실 개선효과를 검토하기 위하여 골 형성 지표인 alkaline phosphatase(ALP) 활성 및 osteocalcin 농도와 골 용해 지표인 C-telopeptide of collagen cross-links(CTx) 및 결합조직 중의 collagen 함량을 측정하였다. ALP는 폐경 시 에스트로겐의 결핍으로 인하여 골 전환이 증가하므로 골 형성의 지표로써 널리 사용되고 있다. 난소절제 시 에스트로겐 결핍으로 bone turnover가 증가되어 비 난소절제군에 비해 혈장 중의 ALP 활성이 증가되었으나, 난소 절제 후 곰피 추출물을 투여한 군에서는 그 활성이 유의적으로 감소하는 경향이 나타났다. 이것은 난소절제 후 에스트로겐의 분비가 감소되는데 반해 곰피 추출물이 에스트로겐 대체 작용을 함으로써 난소절제로 인한 골 손실 정도를 완화시킨 것으로 추측되어진다. 혈중 osteocalcin은 난소를 절제한 OVX-CON군의 경우 난소를 절제하지 않은 SHAM군에 비해 높은 경향을 나타내어 상대적으로 골 중의 osteocalcin 함량은 줄어들었음을 나타내었다. 곰피 추출물을 투여한 경우 OVX-CON군보다 혈중 osteocalcin 농도가 농도 의존적으로 감소하는 경향을 나타내었으나, 유의적인 차이는 나타나지 않았다. 혈중 osteocalcin은 골 대사가 균형을 유지할 때에는 골 대사 표지자로서 작용하여 폐경 후 증가하는 것으로 나타나고 골 대사가 불균형 시에는 골 형성 표지자로서 작용하여 증가 또는 감소하는 것으로 나타나 폐경 후 혈중 osteocalcin의 증감에 대한 해석이 다르게 나타날 수 있으므로 보다 많은 연구가 추가적으로 이루어져야 할 것으로 생각된다. 한편, 골 용해 지표인 혈액 중의 CTx는 난소절제군이 비 절제군에 비해 높은 수준을 보여 난소절제군에 있어 골 용해가 증가되었음을 나타내었다. 반면 곰피 추출물의 투여로 인해 CTx 함량이 감소하였으며, ES200군의 경우 SHAM군보다 높은 수준으로 나타났다. 이는 난소절제로 인해 bone turnover가 증가된 상태에서 곰피 추출물의 투여로 인해 CTx 함량이 점진적으로 감소한 결과로써 곰피의 골 흡수 저해 효과에 의한 것으로 추정된다. 결합조직 중의 collagen 함량은 난소절제로 인하여 감소하였으나, 곰피 추출물의 투여에 의해 회복되는 경향을 나타내었다. 특히 연골 및 폐 조직에서는 난소 절제에 의해 감소한 collagen 함량이 난소 절제 후 곰피 추출물을 투여한 군에서 증가하였고, 곰피 추출물 200 mg/kg bw/day 투여군인 OVXEC200군에서 유의적으로 증가하는 결과가 나타났다. 한편 골 및 피부조직에서도 난소 절제에 의해 감소한 collagen 함량이 곰피 추출물 투여에 의해 증가하였고, 정상군인 SHAM군 수준 이상으로 증가하는 결과가 나타났다. 이상의 실험 결과는 estrogen 부족 시 일어날 수 있는 골 손실에 대한 예방 소재로써 곰피의 활용 가능성을 시사하고 있으며, 이를 활용한 기능성 소재 개발도 가능할 것으로 기대된다.

Keywords

References

  1. Korea National Statistical Office. 2008. Lifetable. Seoul,Korea.
  2. Lee KE, Park YJ, Byun SJ, Yoo EK, Lee ML, Lee YS, Lee HK, Chung ES, Cho OS, Choi ES, Han HS. 1997. Women Health Nursing. Hyunmoonsa, Seoul, Korea.
  3. Johnston CC, Hui SI, Witt RM, Appledorn R, Baker S, Longcope C. 1985. Early menopausal changes in bone mass and sex steroids. J Clin Endocrinol Metab 61: 905-911. https://doi.org/10.1210/jcem-61-5-905
  4. Richelson LS, Wahner HW, Melton LJ. 1984. Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. New Engl J Med 37: 1273-1278.
  5. Kimble RB, Vannice JL, Bloedowl DC. 1994. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J Clin Invest 93: 1959-1967. https://doi.org/10.1172/JCI117187
  6. Lee YA, Kim M. 2008. Effects of sea tangle extract on formation of collagen and collagen cross-link in ovariectomized rats. J Life Sci 18: 1578-1583. https://doi.org/10.5352/JLS.2008.18.11.1578
  7. Kimble RB, Matayoshi AB, Vannice JL. 1995. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology 136: 3054-3061. https://doi.org/10.1210/en.136.7.3054
  8. Dempster DW, Birchman R, Xu R. 1995. Temporal changes in cancellous bone structure of rats immediately after ovariectomy. Bone 16: 157-161.
  9. Lee HS, Jin SH, Kim HS, Ryu BH. 1995. Characteristic properties of fucoidan sulfate purified from Gompi, Ecklonia stolonifera. Korean J Food Sci Technol 27: 716-723.
  10. Park JC, Hur JM, Gwon HJ, Kim HJ, Chun SS, Choi JS, Choi JW. 2000. Effects of phloroglucinol isolated from Ecklonia stolonifera on the acetaminophen-metabolizing enzyme system in rat. J Korean Soc Food Sci Nutr 29:448-452.
  11. Sung JH, Ha S, Im MH, Im JG, Kang KS. 2002. Seaweed and health. In Foods and Health. Hyungseol Press Co, Seoul, Korea. p 190.
  12. Cho KJ, Lee YS, Ryu BH. 1990. Antitumor effect and immunology activity of seaweeds toward sarcoma-180. Bull Kor Fish Soc 23: 345-352.
  13. Kim SA, Kim J, Woo MK, Kwak CS, Lee MS. 2005. Antimutagenic and cytotoxic effects of ethanol extracts from five kinds of seaweeds. J Korean Soc Food Sci Nutr 34: 451-459. https://doi.org/10.3746/jkfn.2005.34.4.451
  14. Kwon MJ, Nam TJ. 2006. Effects of Mesangi (Capsosiphon fulvecens) power on lipid metabolism in high cholesterol fed rats. J Korean Soc Food Sci Nutr 35: 530-535. https://doi.org/10.3746/jkfn.2006.35.5.530
  15. Kang JW. 1966. On the geographical distribution of marine algae Korea. Bull Pusan Fish Coll 7: 1-125.
  16. Kim OK, Lee TG, Park YB, Park DC, Lee YW, Yeo SG, Kim IS, Park YH, Kim SB. 1996. Inhibition of xanthine oxidase by seaweed extracts. J Korean Soc Food Sci Nutr 25: 1069-1073.
  17. Park YB. 2005. Determination of nitrite scavenging activity of seaweed. J Korean Soc Food Sci Nutr 34: 1293-1296. https://doi.org/10.3746/jkfn.2005.34.8.1293
  18. Kim JH, Lee DS, Lim CW, Park HY, Park JH. 2002. Antibacterial activity of sea-mustard, Laminaria japonica extracts on the cariogenic bacteria, Streptococcus mutans. J Korean Fish Soc 35: 191-195. https://doi.org/10.5657/kfas.2002.35.2.191
  19. Ryu BH, Chi BH, Kim DS, Ha MS. 1986. Desmutagenic effect of extracts obtained from seaweed. J Korean Fish Soc 19: 502-508.
  20. Woessner JF. 1961. The determination of hydroxyproline in tissue and protein sample containing small proportion of this amino acid. Arch Biochem Biophys 93: 440-447. https://doi.org/10.1016/0003-9861(61)90291-0
  21. Abe T, Chow JM, Lean JM, Chambers TJ. 1993. Estrogen does not restore bone list after ovariectomy in the rat. J Bone Miner Res 8: 831-838. https://doi.org/10.1002/jbmr.5650080709
  22. Aitken JM, Armstrong E, Anderson JB. 1972. Osteoporosis after oophorectomy in the mature female rat and the effect of oestrogen and/or progesterone replacement therapy in its prevention. J Endocrinol 55: 79-87. https://doi.org/10.1677/joe.0.0550079
  23. Wronski TJ, Cintron M, Dann LM. 1988. Temporal relationship between bone loss and increased bone turnover ovariectomized rats. Calcif Tissue Int 43: 179-183. https://doi.org/10.1007/BF02571317
  24. Ramirez ME, McMurry MP, Wiebke GA, Felton KJ, Ren K. 1997. Evidence for sex steroid inhibition of lipoprotein lipase in men; comparison of abdominal and femoral adipose tissue. Metabolism 46: 179-185. https://doi.org/10.1016/S0026-0495(97)90299-7
  25. Valette A, Meignen KM, Mercier L, Liehr JG, Boyer J. 1986. Effect of 2-fluoroestradiol on lipid metabolism in the ovariectomized rat. J Steroid Biochem 25: 575-578. https://doi.org/10.1016/0022-4731(86)90405-X
  26. Turner RT, Wakley GK, Hannon KS. 1974. Tamoxifen prevents the skeletal effects of ovarian hormone deficiency in rats. J Bone Mineral Res 2: 449-459. https://doi.org/10.1002/jbmr.5650020513
  27. Muller K, Hsiao S. 1980. Estrus- and ovariectomy-induced body weight changes: evidence for two estrogenic mechanisms. J Comp Physiol Psychol 94: 1126-1134. https://doi.org/10.1037/h0077746
  28. Mook DG, Kenney NJ, Roberts S, Nussbaum AI, Rodier WI. 1972. Ovarian-adrenal interactions in regulation of body weight by female rats. J Comp Physiol Psychol 81: 198-211. https://doi.org/10.1037/h0033526
  29. Pi YZ, Wu XP, Liu SP, Luo XH, Cao XZ, Xie H, Liao EY. 2006. Age-related changes in bone biochemical markers and their relationship with bone mineral density in normal Chinese woman. J Bone Miner Res 24: 380-385. https://doi.org/10.1007/s00774-006-0703-2
  30. Kim IG, Kim SB, Kim JG, Kim KC. 1993. Serum enzymes as indicators of radiation exposure in rat. J Radiation Protection 16: 37-44.
  31. Khandwala HM, Mumm S, Whyte MP. 2006. Low serum alkaline phosphatase activity and pathologic fracture: case report and brief review of hypophosphatasia diagnosed in adulthood. Endocr Pract 12: 676-681. https://doi.org/10.4158/EP.12.6.676
  32. Cecchettin M, Bellomatti S, Cremonesi G, Solomeno LP, Torrim G. 1995. Metabolic and bone effects after administration of ipriflavone and salmon calcitonin postmenopausal osteoporosis. Biomed Pharmacother 49: 465-468. https://doi.org/10.1016/0753-3322(96)82691-6
  33. Jang JS. 1987. Bone metabolism and its hormonal regulation.Current Medical Research and Opinion 30: 11-15.
  34. Kim SJ. 2003. Study on the relationship between osteoporosis-cause factor and bone mineral density, Biochemical Marker. MS Thesis. Pukyong National University, Busan, Korea.
  35. Park HM, Kim TC, Kim TC, Kang KH, Yoon SJ, Hur M.2000. The predictive value of changes of bone markers for changes of bone mineral density in postmenopausal hormone replacement therapy with or without active vitamin D. Korean J Obstetrics Gynecology 43: 268-274.
  36. Bonde M, Garnero P, Fledelius C, Qvist P, Delmas PD, Christiansen C. 1997. Measurement of bone degradation products in serum using antibodies reactive with an isomerized from of an 8 amino acid sequence of the C-telopeptide of type Ⅰ collagen. J Bone Mine Res 12: 1028-1034. https://doi.org/10.1359/jbmr.1997.12.7.1028
  37. Garnero P, Hausherr E, Chapuy MC, Marcelli C, GarndjeanH, Muller C, Cormier C, Breart G, Meunier PJ, Delmas PD.1996. Markers of bone resorption predict hip fracture in elderlywomen: the EPIDOS Prospective Study. J Bone Miner Res 11: 1531-1538. https://doi.org/10.1002/jbmr.5650111021
  38. Nakamura YN, Iwamoto H, Ono Y, Nishimura S, Tabata S. 2003. Relationship among collagen amount, distribution and architecture in the M. Longissimus thoracis and M. pectoralis profundus from pigs. Meat Sci 64: 43-50. https://doi.org/10.1016/S0309-1740(02)00135-3
  39. Kim MH, Otsuka M, Arakawa N. 1994. Age-related changein the pyridinoline content of guinea pigs cartilage andachilles tendon collagen. J Nutr Sci Vitaminol 40: 95-103. https://doi.org/10.3177/jnsv.40.95
  40. Tiki ML, Allison GT. 2003. Malondialdehyde oxidation of cartilage collagen by chondrocyte. Osteo Arthritis Research Soc Int 11: 159-166.
  41. Clark AP, Schuttinga JA. 1992. Targeted estrogen/progesteronereplacement therapy for osteoporosis: calculation ofhealth care cost savings. Osteoporos Int 2: 195-200. https://doi.org/10.1007/BF01623926

Cited by

  1. The Effect of Ishige okamurae Extracts on Antioxidant Activity and Serum Lipid Content in Ovariectomized Rats vol.23, pp.12, 2013, https://doi.org/10.5352/JLS.2013.23.12.1501
  2. Effects of Eisenia bicyclis Extracts on the Proliferation and Activity of Osteoblasts and Osteoclasts vol.24, pp.3, 2014, https://doi.org/10.5352/JLS.2014.24.3.297
  3. Effects of Colpomenia sinuosa Extract on Serum Lipid Level and Bone Formation in Ovariectomized Rats vol.45, pp.4, 2016, https://doi.org/10.3746/jkfn.2016.45.4.492
  4. The Effect of Eisenia bicyclis Extracts on Antioxidant Activity and Serum Lipid Level in Ovariectomized Rats vol.22, pp.10, 2012, https://doi.org/10.5352/JLS.2012.22.10.1407
  5. 갈조류 곰피(Ecklonia stolonifera)의 간 건강기능성 vol.51, pp.4, 2010, https://doi.org/10.23093/fsi.2018.51.4.334