DOI QR코드

DOI QR Code

Seismic Behavior of a Five-story RC Structure Retrofitted with Buckling-Restrained Braces Using Time-dependent Elements

시간종속요소를 이용한 5층 RC건축물의 비좌굴가새 보강에 대한 내진거동

  • Received : 2010.02.03
  • Accepted : 2010.09.28
  • Published : 2010.12.31

Abstract

This study presents seismic responses of 5-story reinforced concrete structures retrofitted with the buckling-restrained braces using a time-dependent element. The time-dependent element having birth and death times can freely be activated within the user defined time intervals during the time history analysis. The buckling-restrained brace that showed the largest energy dissipation capacity among the test specimens in previous research was used for retrofitting the RC buildings in this study. It was assumed that the first story of the damaged building under the first earthquake was retrofitted with the buckling-restrained braces considered as the time-dependent element before the second of the successive earthquakes occurs. Under this assumption, this paper compares seismic responses of the RC structures with the time-dependent element subjected to the successive earthquake. Subjected to the second earthquake, it was observed that activation of the BRB systems largely decreases deformation of the moment frame where the damage was concentrated under the first earthquake. However, damages to the shear wall systems were increased after activation of the BRB systems. Since the cumulative damages of the shear wall systems were infinitesimal compared with the retrofit effect of the moment frame, the BRB system was effective under the successive earthquake.

본 연구에서는 시간종속요소를 이용하여 상부벽식-하부골조구조가 고려된 중 저층 철근콘크리트 구조물의 동적응답을 조사하였다. 시간종속요소란 사용자가 원하는 시간간격에서 부재를 활성화할 수 있는 진보된 요소로써 기존의 수행되었던 실험을 통해 가장 우수한 성능을 보인 채널형 비좌굴가새가 해석에서 보강요소로 고려되었다. 시간종속요소로 고려된 비좌굴가새는 1차 지진하중에 의해 구조물이 손상된 후에 2차 지진하중이 발생하기 전에 모멘트골조에 설치, 보강된 것으로 가정되었다. 이러한 가정을 바탕으로 내진설계가 고려되지 않은 5층 콘크리트 건물에 연속지진하중의 적용을 통하여 시간종속요소의 영향에 따라 구조물의 동적응답을 비교하였다. 2차 지진파가 발생했을 때 비좌굴가새를 활성화시키는 것은 1차 지진하중에 의해 손상이 집중된 모멘트골조의 변형을 크게 감소시키는 것으로 조사되었다. 그러나 전단벽시스템은 BRB시스템이 활성화된 이후에도 손상이 증가하는 것으로 나타났다. 모멘트골조의 보강효과에 비해 전단벽시스템의 누적손상이 매우 미세하기 때문에 연속지진하중에 대한 BRB시스템은 효과적인 보강방법으로 조사되었다.

Keywords

References

  1. Lee, D., Kim, D., and Lee, K., "Analytical Approach for the Earthquake Performance Evaluation of Repaired/Retrofitted RC Bridge Piers Using Time-Dependent Element," Nonlinear dynamics, Vol. 56, No. 4, 463-482, 2009. https://doi.org/10.1007/s11071-008-9440-5
  2. 이도형, 전종수, 박대효, "연속지진하중에 의한 철근콘크리트 교량 교각의 응답해석," 한국콘크리트학회 논문집, Vol. 16, No. 3, 357-367, 2004. https://doi.org/10.4334/JKCI.2004.16.3.357
  3. Aschheim, M., and Black, E., "Effects of Prior Earthquake Damage on Response of Siple Stiffness-degrading Structures," Earthquake Spectra, Vol. 15, No. 1, 1-23, 1999. https://doi.org/10.1193/1.1586026
  4. 김진구, 박준희, 이기학, 이진, "철판과 ㄷ-형강을 이용한 좌굴 구속가새의 내진성능," 대한건축학회논문집, Vol. 23, No. 10, 19-26, 2007.
  5. 최현훈, C. Christopoulos, 김진구, "다중 가진에 대한 구조물의 지진응답 평가," 한국지진공학회 논문집, Vol. 12, No. 6, 35-45, 2008. https://doi.org/10.5000/EESK.2008.12.6.035
  6. Izzuddin, B.A., and Elnashai, A.S., "Adaptive Space Frame Analysis Part Ⅰ: A Plastic Hinge Approach," Proceeding of Institution of Civil Engineers Structures & Buildings, Vol. 99, 303-316, 1993. https://doi.org/10.1680/istbu.1993.24352
  7. Izzuddin, B.A., and Elnashai, A.S., "Adaptive Space Frame Analysis Part Ⅱ: A Distributed Plasticity Approach," Proceeding of Institution of Civil Engineers Structures & Buildings, Vol. 99, 317-326, 1993. https://doi.org/10.1680/istbu.1993.24353
  8. Elnashai, A.S., Papanikolaou, V., and Lee. D.H., "ZeusNL-A program for inelastic dynamic analysis of structures," MAE Center, University of Illinois at Urbana-Champaign, USA, 2001.
  9. 김병두, 전대한, 김재웅, "복합구조물의 상부층수 변화에 따른 탄소성 정적 및 동적 응답특성," 한국지진공학회 논문집, Vol. 5, No. 5, 73-83, 2001.
  10. 고동우, 이한선, "필로티형 고층 RC건물의 비선형시간이력해석," 한국지진공학회 논문집, Vol. 13, No. 1, 35-43, 2009. https://doi.org/10.5000/EESK.2009.13.1.035
  11. Jeong, S.H., and Elanashai, A.S., "Analytical Assessment of An Irregular RC Frame for Full-Scale 3D Pseudo-Dynamic Testing Part 1: Analytical Model Verification," Journal of Earthquake Engineering, Vol. 9, No. 1, 95-128, 2005. https://doi.org/10.1142/S1363246905001906
  12. Kabeyasawa, T., Otani, S., and Aoyama, H., "Nonlinear Earthquake Response Analysis of RC Wall Frame Structure," Transactions, Japan Concrete institute, 1983.
  13. Charney, F.A., "Correlation of the Analytical and Experimental Inelastic Response of 1/5 Scale Seven-Story Reinforced Concrete Frame-Wall Structure," Earthquake-Resistant Concrete Strcutures inelastic Response and Design, ACI Sp-127, American Concrete Institute, Detroit, 1991.
  14. Kim, J., Choi, H., and Yu, J., "Seismic Capacity and Construction Cost of Apartment Buildings with Various Spatial Flexibility," Journal of the Architectural Institute of Korea, 25(1), 65-72, 2009.
  15. Illita, R., and Bertero, V.V., "Effects of amount and arrangement of wall-pannel reinforcement on hysteretic behavior of reinforced concrete walls," Earthquake Engineering Research Center Report No. UCB/EERC-80-04, 1980.
  16. Orakcal, K., Massone, L.M., and Wallace, W.J., "Analytcial Modeling of Reinforced Concrete Walls for Predicting Flexural and Coupled-Shear-Flectural Response," Pacific Earthquake Engineering Research Center, University of California, 2006.
  17. Maheri, M.R., and Akbari, R., "Seismic behaviour factor, R, for steel X-braced and knee-braced RC buildings," Engineering structures, 25(12), 1505-1513, 2003. https://doi.org/10.1016/S0141-0296(03)00117-2
  18. Korean Building Code (Structural), 대한건축학회, 2008.
  19. Mukherjee, S., and Gupta, V.K., "Wavelet-Based Generation of Spectrum-Compatible Time-Histories," Soil Dynamics and Earthquake Engineering, Vol. 22, No. 9, 799-804, 2002. https://doi.org/10.1016/S0267-7261(02)00101-X
  20. Di Sarno, L., and Elnashai, A.S., "Bracing Systems for Seismic Retrofitting of Steel Frames," Journal of Constructional Steel Research, Vol. 65, No. 2, 452-465, 2009. https://doi.org/10.1016/j.jcsr.2008.02.013