DOI QR코드

DOI QR Code

NMMP1, a Matrix Metalloprotease in Nicotiana benthamiana Has a Role in Protection against Bacterial Infection

  • Kang, So-Ra (School of Biotechnology, Yeungnam University) ;
  • Oh, Sang-Keun (Department of Plant Sciences, Seoul National University) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University) ;
  • Choi, Do-Il (Department of Plant Sciences, Seoul National University) ;
  • Baek, Kwang-Hyun (School of Biotechnology, Yeungnam University)
  • Received : 2010.10.28
  • Accepted : 2010.11.19
  • Published : 2010.12.01

Abstract

Plant matrix metalloproteases (MMPs) are a family of apoplastic metalloproteases closely related to human matrilysins. Up-regulation of Nicotiana benthamiana matrix metalloprotease 1 (NMMP1) expression by treatment with pathogens, ethephon and aging indicates that the gene is related to plant defense and the aging process through ethylene signaling. NMMP1 expression was higher than in normal growth leaves following infection with an incompatible pathogen Pseudomonas syringae pv. tomato T1 or a compatible pathogen P. syringae pv. tabaci and in aged leaves. Transient overexpression of NMMP1 in N. benthamiana leaves lowered the growth of P. syringae pv. tabaci. However, NMMP1-silenced leaves showed increased growth of P. syringae pv. tabaci. These data strongly suggest that NMMP1 in N. benthamiana is a defense related gene, which is positively regulated by ethylene.

Keywords

References

  1. Almeida, N. F., Yan, S. C., Lindeberg, M. D., Studholme, D. J., Schneider, D. J., Condon, B. F., Liu, H. J., Viana, C. J., Warren, A., Evans, C., Kemen, E., MacLean, D., Angot, A., Martin, G. B., Jones, J. D., Collmer, A., Setubal, J. C. and Vinatzer, B. A. 2009. A Draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact. 22:52-62. https://doi.org/10.1094/MPMI-22-1-0052
  2. An, G. 1987. Binary Ti vectors for plant transformation and promoter analysis. Meth. Enzymol. 153:292-305. https://doi.org/10.1016/0076-6879(87)53060-9
  3. Baek, K.-H. and Choi, D. 2008. Roles of plant proteases in pathogen defense. Plant Pathol. J. 24:367-487. https://doi.org/10.5423/PPJ.2008.24.4.367
  4. Barrett, A. J., Rawlings, N. D. and Woessner, J. F. eds. 2004. Handbook of proteolytic enzymes. Elservier Academic Press, London.
  5. Chung, E., Seong, E., Kim, Y. C., Chung, E. J., Oh, S. K., Lee, S., Park, J. M., Joung, Y. H. and Choi, D. 2004. A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol. Cells 17:377-380.
  6. Coffeen, W. C. and Wolpert, T. J. 2004. Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857-873. https://doi.org/10.1105/tpc.017947
  7. Combier, J. P., Vernié, T., De Billy, F., El Yahyaoui, F., Mathis, R. and Gamas, P. 2007. The MtMMPL1 early nodulin is a novel member of the matrix metalloendoproteinase family with a role in Medicago truncatula infection by Sinorhizobium meliloti. Plant Physiol. 144:703-716. https://doi.org/10.1104/pp.106.092585
  8. Delorme, V. G., McCabe, P. F., Kim, D. J. and Leaver, C. J. 2007. A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber. Plant Physiol. 123:917-927. https://doi.org/10.1104/pp.123.3.917
  9. Dreher, K. A. and Callis, J. 2000. Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 9:787-822.
  10. Eisenhaber, B., Bork, P. and Eisenhaber, F. 1999. Prediction of potential GPI-modification sites in proprotein sequences. J. Mol. Biol. 292:741-758. https://doi.org/10.1006/jmbi.1999.3069
  11. Garcia-Lorenzo, M., Sjodin, A., Jansson, S. and Funk, C. 2006. Protease gene families in Populus and Arabidopsis. BMC Plant Biol. 6:30. https://doi.org/10.1186/1471-2229-6-30
  12. Golldack, D., Popova, O. V. and Dietz, K. J. 2002. Mutation of the matrix metalloproteinase At2-MMP inhibits growth and causes late flowering and early senescence in Arabidopsis. J. Biol. Chem. 277:5541-5547. https://doi.org/10.1074/jbc.M106197200
  13. Graham, I. A., Xiong, J. and Gillikin, J. W. 1991. Purification and developmental analysis of a metalloproteinase from the leaves of Glycine max. Plant Physiol. 97:786-792. https://doi.org/10.1104/pp.97.2.786
  14. Kapila, J., De Rycke, R., Van Montagu, M. and Angenon, G.. 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122:101-108. https://doi.org/10.1016/S0168-9452(96)04541-4
  15. Liu, Y., Dammann, C. and Bhattacharyya, M. K. 2001. The matrix metalloproteinase gene GmMMP2 is activated in response to pathogenic infections in soybean. Plant Physiol. 127:1788-1797. https://doi.org/10.1104/pp.010593
  16. Liu, Y., Schiff, M. and Dinesh-Kumar S. P. 2002. Virus-induced gene silencing in tomato. Plant J. 31:777-786. https://doi.org/10.1046/j.1365-313X.2002.01394.x
  17. Maidment, J. M., Moore, D., Murphy, G. P., Murphy, G. and Clark, I. M. 1999. Matrix metalloproteinase homologues from Arabidopsis thaliana. J. Biol. Chem. 274:34706-34710.
  18. McGeehan, G.., Burkhart, W., Anderegg, R., Becherer, J. D., Gillikin, J. W. and Graham, J. S. 1992. Sequencing and characterization of the soybean leaf metalloproteinase: Structural and functional similarity to the matrix metalloproteinase family. Plant Physiol. 99:1179-1183. https://doi.org/10.1104/pp.99.3.1179
  19. Nagase, H. and Woessner, J. F. Jr. 1999. Matrix metalloproteinases. J. Biol. Chem. 274:21491-21494. https://doi.org/10.1074/jbc.274.31.21491
  20. Pak, J. H., Liu, C. Y., Huangpu, J. and Graham, J. S. 1997. Construction and characterization of the soybean leaf metalloproteinase cDNA. FEBS Lett. 404:283-288. https://doi.org/10.1016/S0014-5793(97)00141-5
  21. Ratnaparkhe, S. M., Egertsdotter, E. M. U. and Flinn, B. S. 2009. Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment. Planta 230:339-354. https://doi.org/10.1007/s00425-009-0949-8
  22. Rawlings, N. D., Barrett, A. J. and Bateman, A. 2010. MEROPS: the peptidase database. Nucl. Acids Res. 38:D227-D233. https://doi.org/10.1093/nar/gkp971
  23. Roberts, K. 1994. The plant extracellular matrix: in a new expansive mood. Curr. Opin. Cell Biol. 6:688-694. https://doi.org/10.1016/0955-0674(94)90095-7
  24. Schiermeyer, A., Hartenstein, H., Mandal, M. K., Otte, B., Wahner, V. and Schillberg, S. 2009. A membrane-bound matrixmetalloproteinase from Nicotiana tabacum cv. BY-2 is induced by bacterial pathogens. BMC Plant Biol. 9:83. https://doi.org/10.1186/1471-2229-9-83
  25. van der Hoorn, R. A. L. and Jones, J. D. 2004. The plant proteolytic machinery and its role in defence. Curr. Opin. Plant. Biol. 7:400-407. https://doi.org/10.1016/j.pbi.2004.04.003
  26. van der Hoorn R. A. L. 2008. Plant proteases: From phenotypes to molecular mechanisms. Annu. Rev. Plant Biol. 59:191-223. https://doi.org/10.1146/annurev.arplant.59.032607.092835

Cited by

  1. Identification of tobacco proteins associated with the stem-loop 1 RNAs of Potato virus X vol.33, pp.4, 2012, https://doi.org/10.1007/s10059-012-2298-x
  2. Nicotiana benthamiana Matrix Metalloprotease 1 ( NMMP 1) gene confers disease resistance to Phytophthora infestans in tobacco and potato plants vol.218, 2017, https://doi.org/10.1016/j.jplph.2017.08.010
  3. Multiple Classes of Immune-Related Proteases Associated with the Cell Death Response in Pepper Plants vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0063533
  4. Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe vol.20, pp.2, 2012, https://doi.org/10.1016/j.bmc.2011.06.068
  5. Matrix metalloproteinases operate redundantly in Arabidopsis immunity against necrotrophic and biotrophic fungal pathogens vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0183577
  6. uncover a large, diverse protease repertoire vol.16, pp.5, 2017, https://doi.org/10.1111/pbi.12852