DOI QR코드

DOI QR Code

Adaptive Sliding-Mode Formation Control and Collision Avoidance for Multi-agent Nonholonomic Mobile Robots with Model Uncertainty and Disturbance

모델 불확실성 및 외란을 갖는 이동 로봇들을 위한 적응 슬라이딩 모드 군집 제어 및 충돌 회피 기법

  • 박봉석 (연세대학교 전기전자공학과) ;
  • 박진배 (연세대학교 전기전자공학과)
  • Received : 2010.04.27
  • Accepted : 2010.06.11
  • Published : 2010.11.01

Abstract

In this paper, an adaptive sliding-mode formation control and collision avoidance are proposed for electrically driven nonholonomic mobile robots with model uncertainties and external disturbances. A sliding surface based on the leader-follower approach is developed to achieve the desired formation in the presence of model uncertainties and disturbances. Moreover, by using the collision avoidance function, the mobile robots can avoid the obstacles successfully. Finally, simulations illustrate the effectiveness of the proposed control system.

Keywords

References

  1. T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot team,” IEEE Trans. Robot. Automat., vol. 14, no. 6, pp. 926-939, Dec. 1998. https://doi.org/10.1109/70.736776
  2. J. Fredslund and M. J. Mataric, “A general algorithm for robot formations using local sensing and minimal communication,” IEEE Trans. Robot. Automat., vol. 18, no. 5, pp. 837-846, Oct. 2002. https://doi.org/10.1109/TRA.2002.803458
  3. J. R. T. Lawton, R. W. Beard, and B. J. Young, “A decentralized approach to formation maneuvers,” IEEE Trans. Robot. Automat., vol. 19, no. 6, pp. 933-941, Dec. 2003. https://doi.org/10.1109/TRA.2003.819598
  4. K. D. Do and J. Pan, “Nonlinear formation control of unicycletype mobile robots,” Robot. Auton. Syst., vol. 55, pp. 191-204, Mar. 2007. https://doi.org/10.1016/j.robot.2006.09.001
  5. P. Ogren, M. Egerstedt, and X. Hu, “A control Lyapunov function approach to multi-agent coordination,” Proc. IEEE Conf. Decision and Control, Orlando, FL, pp. 1150-1155, Dec. 2001.
  6. M. A. Lewis and K. H. Tan, “High precision formation control of mobile robots using virtual structures,” Auton. Robots, vol. 4, no. 4, pp. 387-403, Oct. 1997. https://doi.org/10.1023/A:1008814708459
  7. J. P. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of formations of nonholonomic mobile robots,” IEEE Trans. Robot. Automat., vol. 17, no. 6, pp. 905-908, Dec. 2001. https://doi.org/10.1109/70.976023
  8. J. Shao, G. Xiao, and Z. Cai, “Leader-following formation control of multiple mobile vehicles,” IET Control Theory Appl., vol. 1, no. 2, pp. 545-552, Mar. 2007. https://doi.org/10.1049/iet-cta:20050371
  9. L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques, “Leader-follower formation control of nonholonomic mobile robots with input constraints,” Automatica., vol. 44, pp. 1343-1349, May 2008. https://doi.org/10.1016/j.automatica.2007.09.019
  10. M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, “Slidingmode formation control for cooperative autonomous mobile robots,” IEEE Trans. Ind. Electron., vol. 55, no. 11, pp. 3944-3953, Nov. 2008. https://doi.org/10.1109/TIE.2008.2002717
  11. T. Dierks and S. Jagannathan, “Neural network control of mobile robot formations using RISE feedback,” IEEE Trans. Syst. Man, and Cybern., vol. 39, no. 2, pp. 332-347, Apr. 2009. https://doi.org/10.1109/TSMCB.2008.2005122
  12. J. M. Yang and J. H. Kim, “Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots,” IEEE Trans. Robot. Automat., vol. 15, no. 3, pp. 578-587, Jun. 1999. https://doi.org/10.1109/70.768190
  13. T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots,” IEEE Trans. Control Syst. Technol., vol. 14, no. 3, pp. 501-510, May 2006. https://doi.org/10.1109/TCST.2006.872536
  14. J. J. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1991.