DOI QR코드

DOI QR Code

Electric Field Effect on Nanochannel Formation in Electrochemical Porous Structures of Alumina

  • Kim, Keun-Joo (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University) ;
  • Choi, Jae-Ho (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University) ;
  • Lee, Jung-Tack (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University)
  • Received : 2010.07.02
  • Accepted : 2010.09.14
  • Published : 2010.10.31

Abstract

The authors investigated the anodization mechanism of aluminum in an oxalic acid solution, and the electrochemical reaction is very unique for pore formation via the dissolution process, which is very dependent on the surface geometry in nanoporous alumina templates. The cross-sectional nanochannels showed that the geometrical curvature of the initial surface can cause the branching of nanochannels to be adjusted in volume occupancy to be direct to the electric field normal to the surface. The nanoporous alumina with the crystalline $\gamma-Al_2O_3$ phase showed hexagonal ordering at a voltage of 40 V, with a nanohole distance of 102 nm from the charge density oscillation of the oxalic acid solution.

Keywords

References

  1. M. Steinhart, R. B. Wehrspohn, U. Gosele, and J. H. Wendorff, Angew. Chem. Int. Ed. 43, 1334 (2004) [DOI: 10.1002/anie.200300614].
  2. Y. Li, E. R. Holland, and P. R. Wilshaw, J. Vac. Sci. Technol. B 18, 944 (2000).
  3. S. Rahman and H. Yang, Nano Lett. 3, 439 (2003) [DOI: 10.1021/nl0259479].
  4. A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, and N. Teramae, Nat. Mater. 3, 337 (2004) [DOI: 10.1038/nmat1107].
  5. F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc. 100, 411 (1953) [DOI: 10.1149/1.2781142].
  6. B. B. Lakshmi, P. K. Dorhout, and C. R. Martin, Chem. Mater. 9, 857 (1997) [DOI: 10.1021/cm9605577].
  7. J. Li, C. Papadopoulos, and J. Xu, M. Moskovits, Appl. Phys. Lett. 75, 367 (1999) [DOI: 10.1063/1.124377].
  8. S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, Science 294, 137 (2001) [DOI: 10.1126/science.294.5540.137].
  9. T. T. Xu, F. T. Fisher, L. C. Brinson, and R. S. Ruoff, Nano Lett. 3, 1135 (2003) [DOI: 10.1021/nl0343396].
  10. K. Kim, J. Choi, M. Jung, and D. H. Woo, Jpn. J. Appl. Phys. 47, 6354 (2008) [DOI: 10.1143/JJAP.47.6354].
  11. C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, Nature 445, 749 (2007) [DOI: 10.1038/nature05532].
  12. H. Masuda and K. Fukuda, Science 268, 1466 (1995) [DOI: 10.1126/science.268.5216.1466].
  13. A. P. Li, F. Muller, and U. Gosele, Electrochem. Solid-State Lett. 3, 131 (2000) [DOI: 10.1149/1.1390979].
  14. D. Al Mawlawi, N. Coombs, and M. Moskovits, J. Appl. Phys. 70, 4421 (1991) [DOI: 10.1063/1.349125].
  15. J. P. W. O’Sullivan and G. C. Wood, Proc. R. Soc. Lond. A 317, 511 (1970) [DOI: 10.1098/rspa.1970.0129].
  16. J. A. Davies, B. Domeij, J. P. S. Pringle, and F. Brown, J. Electrochem. Soc. 112, 675 (1965) [DOI: 10.1149/1.2423662].
  17. O. Jessensky, F. Muller, and U. Gosele, Appl. Phys. Lett. 72, 1173 (1998) [DOI: 10.1063/1.121004].
  18. V. P. Parkhutik and V. I. Shershulsky, J. Phys. D 25, 1258 (1992) [DOI: 10.1088/0022-3727/25/8/017].
  19. E. Palibroda, A. Lupsan, S. Pruneanu, and M. Savos, Thin Solid Films 256, 101 (1995) [DOI: 10.1016/0040-6090(94)06293-5].
  20. G. K. Singh, A. A. Golovin, and I. S. Aranson, Phys. Rev. B 73, 205422 (2006) [DOI: 10.1103/PhysRevB.73.205422].
  21. K. Kim, J. Choi, T. S. Bae, M. Jung, and D. H. Woo, Jpn. J. Appl. Phys. 46, 6682 (2007) [DOI: 10.1143/JJAP.46.6682].
  22. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl. Phys. Lett. 71, 2770 (1997) [DOI: 10.1063/1.1201281].
  23. H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda, J. Electrochem. Soc. 148, B152 (2001) [DOI: 10.1149/1.1355686].
  24. G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, Nature 272, 433 (1978) [DOI: 10.1038/272433a0].
  25. R. W. Franklin, Nature 180, 1470 (1957) [DOI : 10.1038/1801470a0].
  26. Z. Wu, C. Richter, and L. Menon, J. Electrochem. Soc. 154, E8 (2007) [DOI: 10.1149/1.2382671].

Cited by

  1. Wettability and drag reduction of a superhydrophobic aluminum surface vol.6, pp.17, 2016, https://doi.org/10.1039/C5RA23842K
  2. Bending and branching of anodic aluminum oxide nanochannels and their applications vol.30, pp.3, 2012, https://doi.org/10.1116/1.4711246
  3. Effect of surface plasmons at the Al/alumina interface on the formation of nanopores in Al anodization vol.95, pp.21, 2015, https://doi.org/10.1080/14786435.2015.1054917