Inhibitory Effect of quercetin-3-O-$\alpha$-L-rhamnopyranoside from Chamaecyparis obtuse on Aldose Reductase and Sorbitol Accumulation

백나무로부터 분리된 quercetin-3-O-$\alpha$-L-rhamnopyranoside의 알도스 환원효소 및 솔비톨 억제효과

  • Kim, Seon-Ha (Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University) ;
  • Kim, Jin-Kyu (Institute of Natural Medicine, Hallym University) ;
  • Lee, Yeon-Sil (Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University) ;
  • Bae, Young-Soo (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Lim, Soon-Sung (Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University)
  • 김선하 (한림대학교 식의약품의 효능평가 및 기능성소재개발센터) ;
  • 김진규 (한림대학교 천연의약연구소) ;
  • 이연실 (한림대학교 식의약품의 효능평가 및 기능성소재개발센터) ;
  • 배영수 (강원대학교 산림바이오소재공학과) ;
  • 임순성 (한림대학교 식의약품의 효능평가 및 기능성소재개발센터)
  • Received : 2010.08.03
  • Accepted : 2010.10.08
  • Published : 2010.10.30

Abstract

Taxifolin-3-O-$\beta$-D-xylopyranoside and quercetin-3-O-$\alpha$-L-rhamnopyranoside were isolated from an EtOAc-soluble extract of the leaves of Chamaecyparis obtuse. Quercetin-3-O-$\alpha$-L-rhamnopyranoside was found to possess a potent inhibitory activity of human recombinant aldose reductase in vitro, its $IC_{50}$ value being $11.5\;{\mu}M$. Kinetic analysis showed that quercetin-3-O-$\alpha$-L-rhamnopyranoside exhibited uncompetitive inhibition against DL-glyceraldehyde. Also, quercetin-3-O-$\alpha$-L-rhamnopyranoside suppresses sorbitol accumulation in rat lens under high glucose conditions, demonstrating the potential to prevent sorbitol accumulation in vivo. These results suggest that this compound may be a promising agent in the prevention or treatment of diabetic complications.

Keywords

References

  1. Baderschneider B and Winterhalter P. (2001). Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignin from riesling wine and screening for antioxidant activity. Journal of Agricultural Food and Chemistry. 49:2788-2798. https://doi.org/10.1021/jf010396d
  2. Gao HY, Wu LJ, Muto N, Fuchino H, Nakane T, Shirota O, Sano T and Kuroyanagi M. (2008). Beyerane derivatives and a sesquiterpene dimer from Japanese cypress (Chamaecyparis obtusa). Chemical and Pharmaceutical Bulletin (Tokyo). 56:1030-1034. https://doi.org/10.1248/cpb.56.1030
  3. Haraguchi H, Ohmi I, Fukuda A, Tamura Y, Mizutani K, Tanaka O and Chou WH. (1997). Inhibition of aldose reductase and sorbitol accumulation by astilbin and taxifolin dihydroflavonols in Engelhardtia chrysolepis. Bioscience Biotechnology and Biochemistry. 61:651-654. https://doi.org/10.1271/bbb.61.651
  4. Ishiguro K, Nagata S, Fukumoto H, Yamaki M, Takagi S and Isoi K. (1991a). A dipeptide derivative from Hypericum japonicum. Phytochemistry. 30:3639-3641. https://doi.org/10.1016/0031-9422(91)80083-D
  5. Ishiguro K, Nagata S, Fukumoto H, Yamaki M, Takagi S and Isoi K. (1991b). A flavanonol rhamnoside from Hypericum japonicum. Phytochemistry. 30:3152-3153. https://doi.org/10.1016/S0031-9422(00)98277-3
  6. Jang YS, Lee CH, Kim MK, Kim JH, Lee S and Lee HS. (2005). Acaricidal activity of active constituent isolated in Chamaecyparis obtusaleaves against Dermatophagoides spp. Journal of Agricultural and Food Chemistry. 53:1934-1937. https://doi.org/10.1021/jf048472a
  7. Jeon YH, Moon JW, Kweon HJ, Jeoung YJ, An CS, Jin HL, Hur SJ and Lim BO. (2010). Effects of Lycii fructus and Astragalus membranaceus mixed extracts on immunomodulators and prevention of diabetic cataract and retinopathy in streptozotocin-induced diabetes rat model. Korean Journal of Medicinal Crop Science. 18:15-21.
  8. Jedziniak JA, Chylack LTJr, Cheng HM, Gillis MK, Kalustian AA and Tung WH. (1981). The sorbitol pathway in the human lens: aldose reductase and polyol dehydrogenase. Investigative Ophthalmology and Visual Science. 20:314-326.
  9. Kador PF, Robison WG and Kinoshita JH. (1985). The pharmacology of aldose reductase inhibitors. Annual Review of Pharmacology and Toxicology. 25:691-714. https://doi.org/10.1146/annurev.pa.25.040185.003355
  10. Krauze-Baranowska M, Poblocka L and El-Hela AA. (2005). Biflavones from Chamaecyparis obtusa. Zeitschrift für Naturforschung. 60:679-685.
  11. Kuo YC, Kuo YH, Lin YL and Tsai WJ. (2006). Yatein from Chamaecyparis obtusasuppresses herpes simplex virus type 1 replication in HeLa cells by interruption the immediate-early gene expression. Antiviral Research. 70:112-120. https://doi.org/10.1016/j.antiviral.2006.01.011
  12. Kuroyanagi M, Ikeda R, Gao HY, Muto N, Otaki K, Sano T, Kawahara N and Nakane T. (2008). Neurite outgrowthpromoting active constituents of the Japanese cypress (Chamaecyparis obtusa). Chemical and Pharmaceutical Bulletin (Tokyo). 56:60-63. https://doi.org/10.1248/cpb.56.60
  13. Kwang-Hyok S, Ui-Nam P, Sarkar C and Bhadra R. (2005). A sensitive assay of red blood cell sorbitol level by high performance liquid chromatography: potential for diagnostic evaluation of diabetes. Clinica Chimica Acta. 354: 41-47. https://doi.org/10.1016/j.cccn.2004.11.006
  14. Lee EH, Song DG, Lee JY, Pan CH, Um BH and Jung SH. (2008a). Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biological and Pharmaceutical Bulletin. 31:1626- 1630. https://doi.org/10.1248/bpb.31.1626
  15. Lee GS, Hong EJ, Gwak KS, Park MJ, Choi KC, Choi IG, Jang JW and Jeung EB. (2010). The essential oils of Chamaecyparis obtusapromote hair growth through the induction of vascular endothelial growth factor gene. Fitoterapia. 81:17-24. https://doi.org/10.1016/j.fitote.2009.06.016
  16. Lee YS, Kang YH, Jung JY, Kang IJ, Han SN, Chung JS, Shin HK and Lim SS. (2008b). Inhibitory constituents of aldose reductase in the fruiting body of Phellinus linteus. Biological and Pharmaceutical Bulletin. 31:765-768. https://doi.org/10.1248/bpb.31.765
  17. Lee YS, Kim SH, Jung SH, Kim JK, Pan CH and Lim SS. (2010). Aldose reductase inhibitory compounds from Glycyrrhiza uralensis. Biological and Pharmaceutical Bulletin. 33:917-921. https://doi.org/10.1248/bpb.33.917
  18. Matsuda H, Morikawa T, Toguchida I and Yoshikawa M. (2002). Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chemical and Pharmaceutical Bulletin. 50:788-795. https://doi.org/10.1248/cpb.50.788
  19. Park JH, Baek MR, Lee BH, Yon GH, Ryu SY, Kim YS, Park SU and Hong KS. (2009). $\alpha$-Glucosidase and a-amylase inhibitory activity of compounds from roots extract of Pueraria thunbergiana. Korean Journal of Medicinal Crop Science. 17:357-362.
  20. Sakushima A, Ohno K, Coskun M, Seki K and Ohkura K. (2002). Separation and identification of taxifolin 3-O-glucoside isomers from Chamaecyparis obtusa (Cupressaceae). Natural Product Letters. 16:383-387. https://doi.org/10.1080/10575630290033141
  21. Shinohara R, Ohta Y, Yamauchi M and Ishiguro I. (1998). Improved fluorometric enzymatic sorbitol assay in human blood. Clinica Chimica Acta. 273:171-184. https://doi.org/10.1016/S0009-8981(98)00036-9
  22. Suzen S and Buyukbingol E. (2003). Recent studies of aldose reductase enzyme inhibition for diabetic complications. Current Medicinal Chemistry. 10:1329-1352. https://doi.org/10.2174/0929867033457377
  23. Srivastava SK, Ramana KV and Bhatnagar A. (2005). Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocrine Reviews. 26:380-392. https://doi.org/10.1210/er.2004-0028
  24. Williamson J, Kilo C and Tilton RG. (1992). Hyperglycemia, Diabetes, and Vascular Disease. In Ruderman et al. (ed.) Mechanism of glucose and diabetes-induced vascular disfunction. Oxford University Press, New York, USA. p.107-132.
  25. Yang JK, Choi MS, Seo WT, Rinker DL, Han SW and Cheong GW. (2007). Chemical composition and antimicrobial activity of Chamaecyparis obtusa leaf essential oil. Fitoterapia. 78:149- 152. https://doi.org/10.1016/j.fitote.2006.09.026