특별직교이방성 적층판이론에 의한 압연형교의 해석

Analysis of Rolled Beam Bridge by means of Specially Orthotropic Laminates Theory

  • 한봉구 (서울과학기술대학교 건설공학부) ;
  • 이창수 (서울과학기술대학교 산업대학원 건축.토목공학협동과정(건기원))
  • 투고 : 2010.08.02
  • 심사 : 2010.09.02
  • 발행 : 2010.09.30

초록

본 연구에서는 거더와 가로보로 이루어진 패널을 특별직교이방성 판 이론을 응용하여 해석하였다. 거더와 가로보는 H 형단면을 사용하였다. 본 논문에서는 특별직교이방성 판 이론을 압연형교에 응용하였으며 해석한 결과를 제시하였다. 해석결과는 보 이론과 비교하였다. 이러한 목적으로 본 논문에서는 유한차분법을 사용하였다. 고유진동수에 대한 $D_{22}$ 강성의 영향을 철저히 검토하였다. 본 연구에서는 판 이론에 의해 수치해석을 해본 결과 보 이론보다 강성이 2.43배가 되는 것을 알 수 있었다.

The specially orthotropic plate theory is used for analysis of panels made of girders and cross-beams. The cross-sections of both girders and cross-beams are H-types. The results of application of this method to rolled beam bridge by using specially orthotropic plate theory is presented. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. According to numerical examination given in this paper, the result by the plate theory is 2.43 times stiffer than that of beam theory.

키워드

참고문헌

  1. Adotte,G.D. (1967), Second-Order Theory in Orthotropic Plates, Journal of the Structural Division, ASCE, Vol. 93. No. ST5, pp. 343.
  2. Chu, K.H. and Krishnamoorthy, G. (1963). Use of Orthotropic Theory in Bridge Design, Journal of the Structural Division, ASCE, Vol. 88. No. ST3, pp. 35.
  3. Clough, R.W. and Penzien, J. (1995), Dynamics of Structures, McGraw-Hill, Inc., N. Y.
  4. Goldberg, John E.,and Kim, D.H. (1967) The Effect of Neglecting the Radial Moment Term in Analyzing a Sectorial Plate by Means of Finite Differences, Proc. of the Seventh International Symposium on Space Technolog and Sciences, Tokyo, Japan.
  5. Han, B.K. and Kim, D.H. (2001) Analysis of steel Bridges by means of Specially Orthotropic Plate Theory, Journal of KSSC, Vol 13 , No. 1, pp.61-69.
  6. Han, B.K. and Kim, D.H. (2004), Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Supports, Journal of the Korea Society of Composite Materials, Vol 17,
  7. Han, B.K, and Kim, D.H. (2009) Analysis of Design of Steel Slab System by means of Special Orthotropic Plate Theory, Proc. of KISM, Vol 1 No.1, pp 87-90.
  8. Han, B.K, and Kim, D.H. (2010) Analysis of Reinforced Concr ete Slab Bridge by the Composite Laminates Theory, Journal of the Korean Society for Advanced Composite Structures, Vol 1 No.1, pp 9-15.
  9. Homberg, H. and Weinmeister, J. (1956), Einflussflachen fur Kreuzwerke, 2. Auflage, Berlin, Springer.
  10. Hongladaromp, T., Rossow, E.C. and Lee, S.L. (1968), Analysis of Elasto-Plastic Grid System, Journal of the Engineering Mechanics Division, ASCE, Vol. 94. No. EM 1, pp. 241.16.
  11. Kim, D.H. (1967), The Effect of Neglecting the Radial Moment Terms in Analyzing a Finite Sectorial Plate by Means of Finite Differences, Proc. Int. Symposium on Space Technology and Sciences, Tokyo, Japan.
  12. Kim, D.H. (1968), Design of Welded Composite High Strength Plate Girder Bridges by Grid Analysis. Journal of Korea Society of Civil Engineers, Vol. 16(1), pp. 26-30.
  13. Kim, D.H. (1995) Composite Structure for Civil and Architectural Engineering, E & FN Spon, 1st edition, London.
  14. Leonhardt, F. and Andra, W. (1950), Die vereinfachte Tragerrostberechnung, 2. Auflage, Stuttgart.
  15. Massonet, G. (1955), Method of Calculation for Bridges with Several Longitudinal Beams Taking into Account their Torsional Resistance, Proc. Intl. Assn. for Bridges and Structural Engineering, Zurich, pp 147-182.
  16. Watanabe, N. (1966), Theory and Calculation of Grid Beams. (in Japanese), Tokyo.