복합신소재로 보강된 철근 콘크리트 구조물의 충돌손상거동 평가

Evaluation of Impact Damage Behavior of a Reinforced Concrete Wall Strengthened with Advanced Composite Materials

  • 노명현 (포항산업과학연구원 강구조연구소) ;
  • 이상열 (중부대학교 토목공학과)
  • 투고 : 2010.07.06
  • 심사 : 2010.08.17
  • 발행 : 2010.09.30

초록

본 논문에서는 폭발하중으로 발생하는 폭풍파의 충격하중과 폭풍파로 초래된 파편의 충돌하중을 동시에 받는 철근 콘크리트 벽체 구조물의 비선형 충돌 손상거동 해석이 수행된다. 이를 위해 먼저 가상 폭발사고 시나리오로부터 철근 콘크리트 구조물에 충격과 충돌 하중이 복합적으로 작용하는 경우를 선정한다. 폭발하중으로 인한 구조물의 저항성능을 확보하기 방안으로는 복합신소재를 보강하는 경우가 고려되고, 복합신소재를 보강하지 않은 철근 콘크리트 벽체 구조물과 보강성능을 비교하여 제시한다. 또한, 막대한 시설과 비용 투자가 요구되는 폭발실험과 근접한 해석을 도출하기 위하여 실제 충격과 충돌 현상을 정확하게 묘사한 구성방정식과 상태방정식을 포함시킨 정교한 해석을 수행한다. 폭발하중과 같은 순간적인 동적 문제를 해석하기 위하여 외연적 고속충돌 해석 프로그램인 AUTODYN-3D을 활용하여 두 가지 대상구조물에 대한 수치 모의실험을 수행하고 복합신소재로 보강된 철근 콘크리트 벽체 구조물의 보강성능을 입증한다.

In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with advanced composite materials (ACM) are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a ACM-strengthened RC wall structure.

키워드

참고문헌

  1. 강영철 (2005) 방호공학, 청문각.
  2. 노명현, 이상열, 박대효 (2008) 복합 폭발하중을 받 는 GFRP보강 RC 벽체 구조물의 비선형 충격 손상 거동 해석, 한국콘크리트학회 봄 학술발표회 논문집, 제20권 1호.
  3. Century Dynamics (2007) AUTODYNA User Manuals. Version 11.
  4. Johansson, M. (2000) Structural behavior in concrete frame corners of civil defence shelters, Non-linear finite element analysis and experiments, Doctoral Thesis, Department of Structural Engineering, Concrete Structural, Chalmers Univerrsity, Goteborg, Sweden.
  5. Johnson G.R. and Cook W.H. (1983) A Constitutive modeling and data for metals subjected to large strain rates and high temperatures, Proceedings of 7th international symposium on ballistics, pp. 541-577.
  6. Krauthammer, T. (1999) Blast-resistant structural concrete and steel connections, International Journal of Impact Engineering, Vol. 22, No. 9-10, pp.43-62.
  7. Leppanen, J. (2002) Dynamic Behaviour of concrete structures subjected to blast and fragment impacts. Licentiate Thesis, Department of Structural Engineering, Concrete Structures, Goteborg, Sweden: Chalmers University of Technology.
  8. Li, Q.M. and Chen X.W. (2003) Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile, International Journal of Impact Engineering, Vol. 28, pp.93-116. https://doi.org/10.1016/S0734-743X(02)00037-4
  9. Riedel W., Thoma K. and Hiermaier S., (1999) Numerical analysis using a new macroscopic concrete model for hydrocodes, Proceedings of 9th international symposium on interaction of the effects of munitions with structures, pp.315-322.
  10. Riedel, W. (2000) Beton unter dynamischen Lasten Meso- und makromechanische Modelle und ihre Parameter (in German). Doctoral Thesis, der Bundeswehr Munchen, Freiburg, Germany.