DOI QR코드

DOI QR Code

INVARIANCE OF DOMAIN THEOREMS FOR CONDENSING MULTIVALUED VECTOR FIELDS

  • Kim, In-Sook (Department of Mathematics, Sungkyunkwan University)
  • Published : 2010.01.31

Abstract

Using a degree theory for countably condensing multivalued maps, we show that under certain conditions an invariance of domain theorem holds for countably condensing or countably k-contractive multivalued vector fields.

Keywords

References

  1. R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, Birkhauser, Basel, 1992.
  2. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
  3. S. Hahn, Gebietsinvarianz und Eigenwertaussagen fur konzentrierende Abbildungen, Comment. Math. Univ. Carolinae 18 (1977), no. 4, 697–713.
  4. M. I. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter, Berlin, 2001.
  5. I.-S. Kim, On the domain invariance of countably condensing vector fields, J. Math. Anal. Appl. 307 (2005), no. 1, 65–76. https://doi.org/10.1016/j.jmaa.2004.10.004
  6. I.-S. Kim, The invariance of domain theorem for condensing vector fields, Topol. Methods Nonlinear Anal. 25 (2005), no. 2, 363–373. https://doi.org/10.12775/TMNA.2005.018
  7. T.-W. Ma, Topological degrees of set-valued compact fields in locally convex spaces, Dissertationes Math. Rozprawy Mat. 92 (1972), 43 pp.
  8. H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), no. 5, 985–999. https://doi.org/10.1016/0362-546X(80)90010-3
  9. W. V. Petryshyn and P. M. Fitzpatrick, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1–25. https://doi.org/10.2307/1996791
  10. J. Schauder, Invarianz des Gebietes in Funktionalraumen, Studia Math. 1 (1929), 123–139. https://doi.org/10.4064/sm-1-1-123-139
  11. J. Schauder, Uber den Zusammenhang zwischen der Eindeutigkeit und L¨osbarkeit partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Math. Ann. 106 (1932), no. 1, 661–721. https://doi.org/10.1007/BF01455908
  12. M. Vath, Fixed point theorems and fixed point index for countably condensing maps, Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 341–363. https://doi.org/10.12775/TMNA.1999.018
  13. M. Vath, An axiomatic approach to a coincidence index for noncompact function pairs, Topol. Methods Nonlinear Anal. 16 (2000), no. 2, 307–338. https://doi.org/10.12775/TMNA.2000.043
  14. M. Vath, On the connection of degree theory and 0-epi maps, J. Math. Anal. Appl. 257 (2001), no. 1, 223–237. https://doi.org/10.1006/jmaa.2000.7346