DOI QR코드

DOI QR Code

Effect of Bimetallic Pt-Rh and Trimetallic Pt-Pd-Rh Catalysts for Low Temperature Catalytic Combustion of Methane

  • Bhagiyalakshmi, Margandan (Chemical Engineering Department, Hanseo University) ;
  • Anuradha, Ramani (Chemical Engineering Department, Hanseo University) ;
  • Park, Sang-Do (Carbon Dioxide Reduction & Sequestration Research Center, Korea Institute of Energy Research) ;
  • Park, Tae-Sung (Carbon Dioxide Reduction & Sequestration Research Center, Korea Institute of Energy Research) ;
  • Cha, Wang-Seog (School of Civil and Environ., Kunsan National University) ;
  • Jang, Hyun-Tae (Chemical Engineering Department, Hanseo University)
  • Published : 2010.01.20

Abstract

Monometallic, bimetallic and trimetallic particles consisting of different weight compositions of Pt-Pd-Rh over pure alumina wash coats have been synthesized and their catalytic performance on methane conversion was studied from 150 to $600^{\circ}C$. Different catalyst formulations with variable Pt, Pd and Rh contents for bimetallic and trimetallic systems were tried and $Pt_{(1.5)}Rh_{(0.3)}/Al_2O_3$ and $Pt_{(1.0)}Pd_{(1.0)}Rh_{(0.3)}/Al_2O_3$ shows low $T_{50}$ and $T_{90}$ temperatures. Bimetallic and trimetallic particle synergism acts as three way catalysts and therefore, all the catalysts show 100% methane conversion. The effect of supports such as $ZrO_2$ and $TiO_2$ on methane combustion was investigated; from $T_{50}$ and $T_{90}$ results both $Al_2O_3$ and $ZrO_2$ are suitable supports for low temperature methane combustion.

Keywords

References

  1. Deutschmann, O.; Behrendt, F.; Warnatz, J. Catal. Today 1994, 21, 461. https://doi.org/10.1016/0920-5861(94)80168-1
  2. Veser, G.; Frauhammer, J.; Schmidt, L. D.; Eigenberger, G. Stud. Surf. Sci. Catal. 1997, 109, 273. https://doi.org/10.1016/S0167-2991(97)80414-4
  3. Lapisardi, G.; Urfels, L.; Gélin, P.; Primet, M.; Kaddouri, A.; Garbowski, E.; Toppi, S.; Tena, E. Catal. Today 2006, 117, 564. https://doi.org/10.1016/j.cattod.2006.06.004
  4. Bonarowska, M.; Karpiński, Z. Catal. Today 2008, 137, 498. https://doi.org/10.1016/j.cattod.2007.11.001
  5. Choudhary, T. V.; Banerjee, S.; Choudhary, V. R. Appl. Catal. A: Gen. 2002, 234, 1. https://doi.org/10.1016/S0926-860X(02)00231-4
  6. Gelin, P.; Primet, M. Appl. Catal. B: Environ. 2002, 39, 1. https://doi.org/10.1016/S0926-3373(02)00076-0
  7. Gelin, P.; Urfels, L.; Primet, M.; Tena, E. Catal. Today 2003, 83, 45. https://doi.org/10.1016/S0920-5861(03)00215-3
  8. Burch, R.; Urbano, F. J. Appl. Catal. A: Gen. 1995, 124, 121. https://doi.org/10.1016/0926-860X(94)00252-5
  9. Narui, K.; Yata, H.; Furuta, K.; Nishida, A.; Kohtoku, Y.; Matsuzaki, T. Appl. Catal. A: Gen. 1999, 179, 165. https://doi.org/10.1016/S0926-860X(98)00306-8
  10. Ersson, A.; Kusar, H.; Carroni, R.; Griffin, T.; Jaras, S. Catal. Today 2003, 83, 265. https://doi.org/10.1016/S0920-5861(03)00247-5
  11. Deng, Y.; Nevell, T. G. Catal. Today 1999, 47, 279. https://doi.org/10.1016/S0920-5861(98)00308-3
  12. Narui, K.; Yata, H.; Furuta, K.; Nishida, A.; Kohtoku, Y.; Matsuzaki, T. Appl. Catal. A: Gen. 1999, 179, 165. https://doi.org/10.1016/S0926-860X(98)00306-8
  13. Ozawa, Y.; Tochihara, Y.; Watanabe, A.; Nagai, M.; Omi, S. Appl. Catal. A : Gen. 2004, 259, 1. https://doi.org/10.1016/j.apcata.2003.09.029
  14. Persson, K.; Ersson, A.; Jansson, K.; Iverlund, N.; Jaras, S. J. Catal. 2005, 231, 139. https://doi.org/10.1016/j.jcat.2005.01.001
  15. Polvinen, R.; Vippola, M.; Valden, M.; Lepisto, T.; Suopanki, A.; Harkonen, M. Surf. Interface Anal. 2004, 36, 741. https://doi.org/10.1002/sia.1752
  16. Matsumoto, Y.; Okawa, Y.; Fujita, T.; Tanaka, K. I. Surf. Sci. 1996, 355, 109. https://doi.org/10.1016/0039-6028(96)01359-3
  17. Nelson, A. E.; Schulz, K. H. Appl. Surf. Sci. 2003, 210, 206. https://doi.org/10.1016/S0169-4332(03)00157-0
  18. Kaila, R. K.; Gutierrez, A.; Slioor, R.; Kemell, M.; Leskela, M.; Outi, A.; Krause, I. Appl. Catal. B: Environ. 2008, 84, 223. https://doi.org/10.1016/j.apcatb.2008.04.001
  19. Souza, M. M. V. M.; Schmal, M. Catal. Lett. 2003, 91, 11. https://doi.org/10.1023/B:CATL.0000006315.86210.dc
  20. Polvinen, R.; Vippola, M.; Valden, M.; Lepisto, T.; Suopanki, A.; Harkonen, M. J. Catal. 2004, 226, 372. https://doi.org/10.1016/j.jcat.2004.05.033
  21. Mazzieri, V. A.; Grau, J. M.; Vera, C. R.; Yori, J. C.; Parera, J. M.; Pieck, C. L. Catal. Today 2005, 107-108, 643.
  22. Garrigos-Pastor, G.; Parres-Esclapez, S.; Bueno-Lopez, A.; Illan-Gomez, M. J.; Salinas-Martínez de Lecea, C. Appl. Catal. A: Gen. 2009, 354, 63. https://doi.org/10.1016/j.apcata.2008.11.019
  23. Linjie, H.; Kenneth, A. B.; Josephine M. H. J. Mol. Catal. A: Chem. 2006, 259, 51. https://doi.org/10.1016/j.molcata.2006.06.018
  24. Isaac, B. H.; Petersen, E. E. J. Catal. 1984, 85, 8. https://doi.org/10.1016/0021-9517(84)90104-0
  25. Chen, L.; Li, Y.; Zang, J.; Luo, X.; Cheng, S. J. Catal. 1994, 145, 132. https://doi.org/10.1006/jcat.1994.1015
  26. Deng, Y.; Nevell, T. G. Catal. Today 1999, 47, 279. https://doi.org/10.1016/S0920-5861(98)00308-3
  27. Yamamoto, H.; Uchida, H. Catal. Today 1998, 45, 147. https://doi.org/10.1016/S0920-5861(98)00265-X
  28. Ersson, A.; Kusar, H.; Carroni, R.; Griffin, T.; Jaras, S. Catal. Today 2003, 83, 65.

Cited by

  1. Interfacial Electronic Structure of Electrodeposited Ag Nanoparticles on Iron Oxide Nanorice Particles vol.37, pp.12, 2016, https://doi.org/10.1002/bkcs.11031
  2. Methane oxidation over Pd catalysts supported on binary Al2O3-La2O3 oxides prepared by the sol-gel method vol.93, pp.None, 2010, https://doi.org/10.1016/j.fuel.2011.11.049
  3. Monometallic Pd and Pt and Bimetallic Pd-Pt/Al2O3-TiO2for the HDS of DBT: Effect of the Pd and Pt Incorporation Method vol.2014, pp.None, 2010, https://doi.org/10.1155/2014/679281
  4. The Attractiveness of the Ternary Rh-Pd-Pt Alloys for CO Oxidation Process vol.8, pp.8, 2020, https://doi.org/10.3390/pr8080928
  5. Development of catalytic ceramic filter candles for tar conversion vol.7, pp.None, 2010, https://doi.org/10.1016/j.jfueco.2021.100021
  6. Investigation of the chemical ordering for Pd n Pt $ _{(32-n}$ ) Rh 6 nanoalloys in TO structure vol.32, pp.7, 2010, https://doi.org/10.1142/s0129183121500923
  7. Catalytic Tar Conversion in Two Different Hot Syngas Cleaning Systems vol.11, pp.10, 2010, https://doi.org/10.3390/catal11101231
  8. Theoretical investigation of chemical reaction kinetics of CO2 and vinyl radical under catalytic combustion vol.305, pp.None, 2010, https://doi.org/10.1016/j.fuel.2021.121566