DOI QR코드

DOI QR Code

Analysis of Static Crack Growth in Asphalt Concrete using the Extended Finite Element Method

확장유한요소법을 이용한 아스팔트의 정적균열 성장 분석

  • 지광습 (고려대학교 건축사회환경공학과) ;
  • 유성문 (고려대학교 건축사회환경공학과) ;
  • 챠우딘딴 (고려대학교 건축사회환경공학과) ;
  • 문성호 (한국도로공사 도로교통연구원)
  • Received : 2010.01.20
  • Accepted : 2010.04.06
  • Published : 2010.08.31

Abstract

This paper studies static crack growth of asphalt pavement using the extended finite element method (XFEM). To consider nonlinear characteristics of asphalt concrete, a viscoelastic constitutive equation using the Maxwell chain is used. And a linear cohesive crack model is used to regularize the crack. Instead of constructing the viscoelastic constitutive law from the Prony approximation of compliance and retardation time measured experimentally, we use a smooth log-power function which optimally fits experimental data and is infinitely differentiable. The partial moduli of the Maxwell chain from the log-power function make analysis easy because they change more smoothly in a more stable way than the ordinary method such as the least square method. Using the developed method, we can simulates the static crack growth test results satisfactorily.

본 논문에서는 아스팔트 포장의 균열 성장을 분석하기 위해서 확장유한요소법을 사용하였다. 또한 아스팔트의 점탄성 효과를 고려하기 위하여 맥스웰 체인을 이용한 점탄성 구성방정식을 사용하였으며, 균열 모델로는 선형점성균열 모델을 사용하였다. 특히 점탄성 구성방정식을 구성할 때 측정을 통해 얻어지는 온도별 변형계수와 지연시간을 Prony 급수를 이용해 재구성한 크리프 곡선을 직접 사용하지 않고 연속적인 미분이 가능한 멱승 로그 식으로 대체하여 사용하였다. 멱승 로그 식으로 완화시간 스펙트럼(relaxation spectrum)을 계산하여 맥스웰 체인의 부분탄성계수(partial moduli)를 도출하였다. 멱승 로그 적정 식을 통해 구한 맥스웰 체인의 부분 탄성계수는 크리프 곡선을 직접 이용하는 방법으로 구한 부분 탄성계수 보다 안정적인 형태의 곡선을 나타내어 해석을 용이하게 해준다. 개발된 정적균열 해석 모듈을 이용하여 아스팔트 시편의 온도별 정적균열 성장 실험 결과를 성공적으로 모사할 수 있었다.

Keywords

References

  1. 유성문, 지광습, Chau Dinh Thanh, 이현종, 문성호(2009) J-적분을 이용한 점탄성 재료의 피로균열 성장 분석. 전산구조공학회 논문집 게재중.
  2. 유성문(2009) 점탄성 재료(아스팔트 포장)의 정적균열 성장 및 피로균열 성장 분석. 석사학위논문, 고려대학교.
  3. 지광습(2004) 확장유한요소법을 이용한 임의의 불연속면 처리기법. 전산구조공학회 논문집, 한국전산구조공학회, 제17권 제2호, pp. 60-72.
  4. 지광습, 송정훈, 이상호(2005) 확장유한요소법을 이용한 요소망 제약조건이 없는 다중 피로균열 진전 해석기법. 대한토목학회 논문집, 대한토목학회, 제25권 제1A호, pp. 183-190.
  5. Barenblatt, G. I. (1962) The mathematical theory of equilibrium of cracks in brittle fracture. Advances in Applied Mechanics, Vol. 7, pp. 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
  6. Bazant, Z. P. and Xi, Y. (1995) Continuous retardation spectrum for solidification theory of concrete creep. Journal of Structural Engineering, ASCE, Vol. 119, pp. 301-322.
  7. Belytschko, T. and Black, T. (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, Vol. 45, No.5, pp. 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  8. Belytschko, T., Chen, H., and Xu, J. X. (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical Methods in Engineering. Vol. 58, No. 12, pp. 1873-1905. https://doi.org/10.1002/nme.941
  9. Dugdale, D. S. (1960) Yielding of steel sheets containing slits. Journal of Mechanics & Solids, Vol. 8, pp. 100-108. https://doi.org/10.1016/0022-5096(60)90013-2
  10. Kuai, H. (2009) A Top-down Cracking Model of Asphalt Pavements Based on a Viscoelastic Fracture Mechanics Theory, 박사학위논문, 세종대학교
  11. Kuai, H., Lee, H. J., Zi, G., and Mun, S. (2009) Application of generalized J-integral to crack propagation modeling of asphalt concrete under repeated loading. Transportation Research Record: Journal of the Transportation Research Board, Vol. 2127, pp. 72-81. https://doi.org/10.3141/2127-09
  12. Jirasek, M., Bazant, Z. P. (2002) Inelastic Analysis of Structures, John Wiley & Sons, Ltd, England.
  13. Moes, N. and Belytschko, T. (2002) Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics, Vol. 69, No. 7, pp. 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
  14. Moes, N., Dolbow, J., and Belytschoko, T. (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering. Vol. 46, No. 1, pp. 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  15. Mun, N. and Zi, G. (2010) Modeling the viscoelastic function of asphalt concrete using a spectrum method. Mechanics of Time Dependent Materials 게재중. https://doi.org/10.1007/s11043-009-9102-0
  16. Ortiz, M. and Pandolfi, A. (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, Vol. 44, pp. 1267-1282. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
  17. Xu, X. P. and Needleman, A. (1994) Numerical simulations of fast crack-growth in brittle solids. Journal of the Mechanics and Physics of Solids, Vol. 42, pp. 1397-1434. https://doi.org/10.1016/0022-5096(94)90003-5
  18. Yu, S. M., Thanh, C. D., Mun, S. H., Lee, H. J., Lee, S. J., and Zi, G. (2009) The extended finite element method applied to crack growth mechanism of asphalt pavement in REAAA 13th, Inchcon. Korea, Vol. 171.
  19. Zi, G. and Belytschko, T. (2003) New crack-tip elements for XFEM and applications to cohesive cracks. International Journal for Numerical Methods in Engineering, Vol. 57, No. 15, pp. 2221-2240. https://doi.org/10.1002/nme.849
  20. Zi, G., Chen, H., Xu, J., and Belytschko, T. (2005) The extended finite element method for dynamic fractures. Shock and Vibration, Vol. 12, No. 1, pp. 9-23. https://doi.org/10.1155/2005/729090
  21. Zi, G., Song, J., Budyn, E., Lee, S., and Belytschko, T. (2004) A method for growing multiple cracks without remeshing and its application to fatigue crack growth. Institute of physics publishing. Modeling and Simulation in Materials Science and Engineering, Vol. 12, pp. 901-915. https://doi.org/10.1088/0965-0393/12/5/009
  22. Zi, G. and Bazant, Z. P. (2002) Continuous relaxation spectrum for concrete creep and its incorporation into microplane model M4. Journal of Engineering Mechanics ASCE, Vol. 128, No. 12, pp. 1331-1336. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:12(1331)