DOI QR코드

DOI QR Code

Preparation of Sr2FeMoO6 Thin Films by RF Magnetron Sputtering and Their Electrical Conduction Properties

RF 스퍼터법을 이용한 Sr2FeMoO6 박막 제조 및 전기전도 특성

  • Ryu, Hee-Uk (Department of Materials Science Engineering, Kunsan National University) ;
  • Sun, Ho-Jung (Department of Materials Science Engineering, Kunsan National University)
  • 유희욱 (군산대학교 신소재공학과) ;
  • 선호정 (군산대학교 신소재공학과)
  • Received : 2010.09.04
  • Accepted : 2010.11.02
  • Published : 2010.12.01

Abstract

Single-phase $Sr_2FeMoO_6$ thin films were produced by RF magnetron sputtering for use as electrodes in integrated sensors and found to be good conductors at room temperature. The films were deposited from a powder-type sputtering target under various conditions, and were crystallized by annealing. Elimination of $O_2$ gas during deposition, by the use of a solely Ar sputtering gas under a working pressure as low as possible, and vacuum annealing were important to promote the $Sr_2FeMoO_6$ phase. However, oxygen exclusion from sputtering and annealing was not enough to yield single-phase $Sr_2FeMoO_6$: hydrogen annealing was also required. Film production was optimized by varying the deposition parameters and hydrogen annealing conditions. The film had good electrical conduction, with a low resistivity of $1.6{\times}10^{-2}\Omega{\cdot}cm$ at room temperature.

Keywords

References

  1. T. Mihara, H. Watanabe, and C. A. P. D. Araujo, Jpn. J. Appl. Phys. 33, 5281 (1994). https://doi.org/10.1143/JJAP.33.5281
  2. J. J. Lee, C. L. Thio, and S. B. Desu, J. Appl .Phys. 78, 5073 (1995). https://doi.org/10.1063/1.359737
  3. D. J. Taylor, J. Geerse, and P. K. Larsen, Thin Solid Films 263, 221 (1995). https://doi.org/10.1016/0040-6090(95)06576-8
  4. D. P. Vijay and S. B. Desu, J. Electrochem. Soc. 140, 2640 (1993). https://doi.org/10.1149/1.2220877
  5. T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, Appl. Phys. Lett. 65, 1522 (1994). https://doi.org/10.1063/1.112031
  6. M.-S. Chen, J.-M. Wu, and T.-B. Wu, Jpn. J. Appl. Phys. 34, 4870 (1995). https://doi.org/10.1143/JJAP.34.4870
  7. T. Morimoto, O. Hidaka, K. Yamakawa, O. Arisumi, H. kanaya, T. Iwamoto, Y. Kumura, I. Kunishima, and S.-I. Tanaka, Jpn. J. Appl. Phys. 39, 2110 (2000). https://doi.org/10.1143/JJAP.39.2110
  8. D. Serrate, J. M. De Teresa, and M. R. Ibarra, J. Phys.: Condens. Matter 19, 023201 (2007). https://doi.org/10.1088/0953-8984/19/2/023201
  9. T. Manako, M. Izumi, Y. Konishi, and K. I. Kobayashi, M. Kawasaki and Y. Tokura, Appl. Phys. Lett. 74, 2215 (1999). https://doi.org/10.1063/1.123805
  10. H. Asano, S. B. Orale, J. Garrison, A. Orozoco, Y. H. Li, E. Li, V. Smolyaninova, C. Galley, M. Downes, M. Rajeswari, R. Ramesh, and T. Venkatesan, Appl. Phys. Lett. 74, 3696 (1999). https://doi.org/10.1063/1.123224
  11. T. Nakamura, K. Kunihara, and Y. Hirose, Mat. Res. Bull. 16, 321 (1981). https://doi.org/10.1016/0025-5408(81)90048-9