DOI QR코드

DOI QR Code

Reconfigurable Optical Add-Drop Multiplexer Using a Polymer Integrated Photonic Lightwave Circuit

  • Shin, Jang-Uk (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Han, Young-Tak (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Han, Sang-Pil (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Park, Sang-Ho (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Baek, Yong-Soon (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Noh, Young-Ouk (Research Institute, ChemOptics, Inc.) ;
  • Park, Kang-Hee (Manufacturing Technology Division, Fira Photonics, Inc.)
  • Received : 2009.05.12
  • Accepted : 2009.10.09
  • Published : 2009.12.31

Abstract

We have developed a fully functional reconfigurable optical add-drop multiplexer (ROADM) switch module using a polymer integrated photonic lightwave circuit technology. The polymer variable optical attenuator (VOA) array and digital optical switch array are integrated into one polymer PLC chip and packaged to form a 10-channel VOA integrated optical switch module. Four of these optical switch modules are used in the ROADM switch module to execute 40-channel switching and power equalization. As a wavelength division multiplexer (WDM) filter device, two C-band 40-channel athermal arrayed waveguide grating WDMs are used in the ROADM module. Optical power monitoring of each channel is carried out using a 5% tap PD. A controller and firmware having the functions of a 40-channel switch and VOA control, optical power monitoring, as well as TEC temperature control, and data communication interfaces are also developed in this study.

Keywords

References

  1. Photonic Solutions, Inc., http://www.photonicsolution.com
  2. L. Leick et al., "Athermal AWGs for Colourless WDM-PON with ${-40^{\circ}C}$ to ${+70^{\circ}C}$ and Underwater Operation," Optical Fiber Commun. Conf. 2006, paper PDP31.
  3. Fira Photonics Co., Ltd, http://www.fi-ra.com.
  4. ChemOptics, Inc., http://www.chemoptics.co.kr.
  5. Y.T. Han et al., "Crosstalk-Enhanced DOS Integrated with Modified Radiation-Type Attenuators," ETRI J., vol. 30, no. 5, Oct. 2008, pp. 744-746. https://doi.org/10.4218/etrij.08.0208.0149
  6. Y.T. Han et al., "Fabrication of 10-Channel Polymer Thermo-Optic Digital Optical Switch Array," IEEE Photonics Technol. Lett., vol. 21, no. 20, Oct. 2009, pp. 1556-1558. https://doi.org/10.1109/LPT.2009.2029870
  7. Y.T. Han, J.U. Shin, and S.H. Park, "10 Channel Polymer Variable Optical Attenuator Array for Power Monitoring and Equalization in Integrated PLC ROADM Module," Photonics in Switching, 4-7 Aug. 2008, pp. 1-2.
  8. S.P. Han, "The ROADM Optical Switch Technology for Metro Optical Network," Conf. Optoelectron. Optical Commun., May 2009.

Cited by

  1. Tunable External Cavity Laser by Hybrid Integration of a Superluminescent Diode and a Polymer Bragg Reflector vol.17, pp.6, 2009, https://doi.org/10.1109/jstqe.2011.2130515
  2. Ultra-low inter-channel crosstalk in array waveguide device incorporating self-assembled microsphere diffraction layer. vol.19, pp.21, 2011, https://doi.org/10.1364/oe.19.020904
  3. Optimization of a Birefringence-Enhanced-Waveguide-Based Polarization Beam Splitter vol.34, pp.6, 2009, https://doi.org/10.4218/etrij.12.0212.0186
  4. N N polymer matrix switches using thermo-optic total-internal-reflection switch. vol.20, pp.12, 2009, https://doi.org/10.1364/oe.20.013284
  5. 대용량 광통신 부품 기술 동향 vol.24, pp.6, 2009, https://doi.org/10.3807/kjop.2013.24.6.297
  6. Low-crosstalk high-density polymeric integrated optics incorporating self-assembled scattering monolayer. vol.22, pp.12, 2009, https://doi.org/10.1364/oe.22.014237
  7. Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials vol.17, pp.8, 2009, https://doi.org/10.1088/2040-8978/17/8/085802
  8. The 650-nm variable optical attenuator based on polymer/silica hybrid waveguide vol.25, pp.5, 2009, https://doi.org/10.1088/1674-1056/25/5/054101
  9. Compact Eight-Channel Thermally Reconfigurable Optical Add/Drop Multiplexers on Silicon vol.28, pp.17, 2009, https://doi.org/10.1109/lpt.2016.2574459
  10. Silicon Nanophotonic Integrated Devices for On-Chip Multiplexing and Switching vol.35, pp.4, 2009, https://doi.org/10.1109/jlt.2016.2587727
  11. Hitless and gridless reconfigurable optical add drop (de)multiplexer based on looped waveguide sidewall Bragg gratings on silicon vol.28, pp.10, 2009, https://doi.org/10.1364/oe.390218
  12. Chip-Scale Reconfigurable Optical Full-Field Manipulation: Enabling a Compact Grooming Photonic Signal Processor vol.7, pp.5, 2009, https://doi.org/10.1021/acsphotonics.0c00103