DOI QR코드

DOI QR Code

Effects of Interfacial Dielectric Layers on the Electrical Performance of Top-Gate In-Ga-Zn-Oxide Thin-Film Transistors

  • Cheong, Woo-Seok (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Lee, Jeong-Min (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Lee, Jong-Ho (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • KoPark, Sang-Hee (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Yoon, Sung-Min (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Byun, Chun-Won (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Yang, Shin-Hyuk (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Chung, Sung-Mook (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Cho, Kyoung-Ik (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Hwang, Chi-Sun (Convergence Components & Materials Research Laboratory, ETRI)
  • Received : 2009.06.16
  • Accepted : 2009.08.26
  • Published : 2009.12.31

Abstract

We investigate the effects of interfacial dielectric layers (IDLs) on the electrical properties of top-gate In-Ga-Zn-oxide (IGZO) thin film transistors (TFTs) fabricated at low temperatures below $200^{\circ}C$, using a target composition of In:Ga:Zn = 2:1:2 (atomic ratio). Using four types of TFT structures combined with such dielectric materials as $Si_3N_4$ and $Al_2O_3$, the electrical properties are analyzed. After post-annealing at $200^{\circ}C$ for 1 hour in an $O_2$ ambient, the sub-threshold swing is improved in all TFT types, which indicates a reduction of the interfacial trap sites. During negative-bias stress tests on TFTs with a $Si_3N_4$ IDL, the degradation sources are closely related to unstable bond states, such as Si-based broken bonds and hydrogen-based bonds. From constant-current stress tests of $I_d$ = 3 ${\mu}A$, an IGZO-TFT with heat-treated $Si_3N_4$ IDL shows a good stability performance, which is attributed to the compensation effect of the original charge-injection and electron-trapping behavior.

Keywords

References

  1. H. Yabuta et al., "High-Mobility Thin-Film Transistor with Amorphous $InGaZnO_4$ Channel Fabricated by Room Temperature RF-Magnetron Sputtering," Appl. Phys. Lett., vol. 89, no. 11, 2006, pp. 112123(1-3).
  2. K. Nomura et al., "Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors," Nature, vol. 432, no. 25, 2004, pp. 488-491. https://doi.org/10.1038/nature03090
  3. H.N. Lee et al., "3.5 Inch QCIF + AM-OLED Panel Based on Oxide TFT Backplane," Tech. Dig. SID, California, USA, 2007, pp. 1826-1829.
  4. T. Kamiya and M. Kawasaki, "ZnO-Based Semiconductors as Building Blocks for Active Devices," MRS Bulletin, vol. 33, 2008, pp. 1061-1066. https://doi.org/10.1557/mrs2008.226
  5. J.F. Wager, D.A. Keszler, and R.E. Presley, Transparent Electronics, New York: Springer, 2008.
  6. S. Chang et al., "Efficient Suppression of Charge Trapping in ZnO-Based Transparent Thin Film Transistors with Novel $Al_2O_3/HfO_2/Al_2O_3$ Structure," Appl. Phys. Lett., vol. 92, 2008, pp. 192104(1-3).
  7. J.S. Park et al., "Impact of High-k TiOx Dielectric on Device Performance of Indium-Gallium-Zinc Oxide Transistors," Appl. Phys. Lett., vol. 94, 2009, pp. 042105(1-3).
  8. A. Suresh et al., "Room Temperature Pulsed Laser Deposited Indium Gallium Zinc Oxide Channel Based Transparent Thin Film Transistors," Appl. Phys. Lett., vol. 90, 2007, pp. 123512 (1-3).
  9. J.M. Lee et al., "Low-Frequency Noise in Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors," IEEE Electron Device Lett., vol. 30, 2009, pp. 505-507. https://doi.org/10.1109/LED.2009.2015783
  10. J.K. Jeong et al., "Origin of Threshold Voltage Instability in Indium-Gallium-Zinc Oxide Thin Film Transistors," Appl. Phys. Lett., vol. 93, 2008, pp. 123508 (1-3).
  11. W.S. Cheong et al., "Process Development of ITO Source/Drain for the Top-Gate Indium-Gallium-Zinc Oxide Transparent Thin-Film Transistor," Thin Solid Films, vol. 517, 2009, pp. 4094-4099. https://doi.org/10.1016/j.tsf.2009.01.181
  12. W.S. Cheong et al., "Optimization of an Amorphous In-Ga-Zn-Oxide Semiconductor for a Top-Gate Transparent Thin Film Transistor," J. Korean Phys. Soc., vol. 54, no. 5, 2009, pp. 1879-1884. https://doi.org/10.3938/jkps.54.1879
  13. W. Lim et al., "Interface Dependent Electrical Properties of Amorphous InGaZnO4 TFTs," J. Vac. Sci. Technol. B, vol. 27, 2009, pp. 126-129. https://doi.org/10.1116/1.3058717
  14. J.K. Jeong et al., "High Performance Thin Film Transistors with Cosputtered Amorphous Indium Gallium Zinc Oxide Channel," Appl. Phys. Lett., vol. 91, 2007, pp. 113505 (1-3).
  15. J.H. Shin et al., "Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors," ETRI Journal, vol. 31, no. 1, 2009, pp. 62-64. https://doi.org/10.4218/etrij.09.0208.0266

Cited by

  1. Transparent Flexible Zinc-Indium-Tin Oxide Thin-Film Transistors Fabricated on Polyarylate Films vol.49, pp.5, 2009, https://doi.org/10.1143/jjap.49.05eb10
  2. Zirconium oxide-aluminum oxide nanolaminate gate dielectrics for amorphous oxide semiconductor thin-film transistors vol.29, pp.4, 2009, https://doi.org/10.1116/1.3609254
  3. Electrical properties of top-gate oxide thin-film transistors with double-channel layers vol.326, pp.1, 2011, https://doi.org/10.1016/j.jcrysgro.2011.01.094
  4. A Study of the Surface Chemical Reactions on IGZO Thin Film in BCl3/Ar Inductively Coupled Plasma vol.159, pp.4, 2009, https://doi.org/10.1149/2.034204jes
  5. Effect of Oxygen Binding Energy on the Stability of Indium-Gallium-Zinc-Oxide Thin-Film Transistors vol.34, pp.6, 2009, https://doi.org/10.4218/etrij.12.0212.0232
  6. Double-layered passivation film structure of Al2O3/SiNx for high mobility oxide thin film transistors vol.31, pp.2, 2009, https://doi.org/10.1116/1.4789423
  7. Bias-stability improvement using Al2O3 interfacial dielectrics in a-InSnZnO thin-film transistors vol.28, pp.8, 2009, https://doi.org/10.1088/0268-1242/28/8/085015
  8. Dry Etching Characteristics of Indium Zinc Oxide Thin Films in Adaptive Coupled Plasma vol.14, pp.4, 2013, https://doi.org/10.4313/teem.2013.14.4.216
  9. Negative-Bias Light Stress Instability Mechanisms of the Oxide-Semiconductor Thin-Film Transistors Using In–Ga-O Channel Layers Deposited With Different Oxygen Partial Pressures vol.61, pp.1, 2009, https://doi.org/10.1109/ted.2013.2288264
  10. Top-gate zinc tin oxide thin-film transistors with high bias and environmental stress stability (5 pages) vol.104, pp.25, 2009, https://doi.org/10.1063/1.4885362
  11. Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer vol.6, pp.None, 2016, https://doi.org/10.1038/srep37764