DOI QR코드

DOI QR Code

Phoma herbarum as a New Gibberellin-Producing and Plant Growth-Promoting Fungus

  • Hamayun, Muhammad (School of Applied Biosciences, Kyungpook National University) ;
  • Khan, Sumera Afzal (Centre of Biotechnology and Microbiology, University of Peshawar) ;
  • Khan, Abdul Latif (School of Applied Biosciences, Kyungpook National University) ;
  • Rehman, Gauhar (Department of Genetic Engineering, Kyungpook National University) ;
  • Sohn, Eun-Young (School of Applied Biosciences, Kyungpook National University) ;
  • Shah, Aamer Ali (Department of Biotechnology, Quaid-i-Azam University) ;
  • Kim, Sang-Kuk (Institute for Bioresources Research, Gyongbuk Provincial Agricultural Technology Administration) ;
  • Joo, Gil-Jae (Institute of Agricultural Science and Technology, Kyungpook National University) ;
  • Lee, In-Jung (School of Applied Biosciences, Kyungpook National University)
  • Published : 2009.10.31

Abstract

Endophytic fungi are known for the production of valuable metabolites, but information on the gibberellin production capacity of this group is limited. We isolated 9 endophytic fungi from the roots of salt-stressed soybean plants and screened them on waito-c rice, in order to identify plant growth promoting fungal strains. The fungal isolate TK-2-4 gave maximum plant length (20.35 cm) promotion in comparison with wild-type Gibberella fujikuroi (19.5 cm). In a separate experiment, bioassay of TK-2-4 promoted plant length and biomass of soybean cultivar Taegwangkong. The TK-2-4 culture filtrate was analyzed for the presence of gibberellins, and it was found that all physiologically active gibberellins, especially $GA_4$ and $GA_7$, were present in higher amounts ($GA_1$, 0.11 ng/ml; $GA_3$, 2.91 ng/ml; $GA_4$, 3.21 ng/ml; and $GA_7$, 1.4 ng/ml) in conjunction with physiologically inactive $GA_9$ (0.05 ng/ml), $GA_{12}$ (0.23 ng/ ml), $GA_{15}$ (0.42 ng/ml), $GA_{19}$ (0.53 ng/ml), and $GA_{20}$ (0.06 ng/ml). The fungal isolate TK-2-4 was later identified as a new strain of Phoma herbarum, through the phylogenetic analysis of 28S rDNA sequence.

Keywords

References

  1. Cragg, G. M., D. J. Newman, and K. M. Snader. 1997. Natural products in drug discovery and development. J. Nat. Prod. 60:52-60 https://doi.org/10.1021/np9604893
  2. Cruz, Jos$\acute{e}$ Fausto Rivero,Martha Mac$\acute{i}$as, Carlos M. Cerda-Garc$\acute{i}$a-Rojas, and Rachel Mata. 2003. A new phytotoxic nonenolide from Phoma herbarum. J. Nat. Prod. 66: 511-514 https://doi.org/10.1021/np020501t
  3. Daniel, H. M. and W. Meyer. 2003. Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomyceteous yeasts. Int. J. Food Microbiol. 86: 61-78 https://doi.org/10.1016/S0168-1605(03)00248-4
  4. Franck, C., J. Lammertyn, and B. Nicolai. 2005. Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears. Proceedings of 5th International Postharvest Symposium. F. Mencarelli and P. Tonutti (eds.). Acta Hort. 682: 1991-1998
  5. Goldring, W. P. D. and G. A. Pattenden. 2006. The phomactins:A novel group of terpenoid platelet activating factor antagonists related biogenetically to the taxanes. Acc. Chem. Res. 39: 354-361 https://doi.org/10.1021/ar050186c
  6. Han, F., W. Yao, X. B. Yang, X. N. Liu, and X. D. Gao. 2005. Experimental study on anticoagulant and antiplatelet aggregation activity of a chemically sulfated marine polysaccharide YCP. Int. J. Biol. Macromol. 36: 201-207 https://doi.org/10.1016/j.ijbiomac.2005.06.003
  7. Hasan, H. A. H. 2002. Gibberellin and auxin production plant root fungi and their biosynthesis under salinity-calcium interaction. Rostlinn$\acute{a}$ V$\acute{y}$roba 48: 101-106
  8. Higgs, R. E., A. Z. James, D. G. Jeffrey, and D. H. Matthew. 2001. Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl. Environ. Microbiol. 67: 371-376 https://doi.org/10.1128/AEM.67.1.371-376.2001
  9. Hoagland, D. R. and D. I. Arnon. 1950. The Water-Culture Method for Growing Plants Without Soil. University of California Agricultural Experiment. Station, Berkley (Circ. 347)
  10. Kawaide, H. 2006. Biochemical and molecular analysis of gibberellin biosynthesis in fungi. Biosci. Biotechnol. Biochem. 70: 583-590 https://doi.org/10.1271/bbb.70.583
  11. Khan, S. A., M. Hamayun, H. J. Yoon, H. Y. Kim, S. J. Suh, S. K. Hwang, et al. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231 https://doi.org/10.1186/1471-2180-8-231
  12. Lee, H. G., J. Y. Lee, and D. H. Lee. 2001. Cloning and characterization of the ribosomal RNA gene from Gonyaulax polyerdra. J. Microbiol. Biotechnol. 11: 515-523
  13. Lee, I. J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011 https://doi.org/10.1104/pp.116.3.1003
  14. Liu, C. H., J. Y. Liu, L. L. Huang, W. X. Zou, and R. X. Tan. 2003. Absolute configuration of keisslone, a new antimicrobial metabolite from Keissleriella sp. YS4108, a marine filamentous fungus. Planta Med. 69: 481-483 https://doi.org/10.1055/s-2003-39696
  15. Liu, C. H., J. C. Meng, W. X. Zou, L. L. Huang, H. Q. Tang, and R. X. Tan. 2002. Antifungal metabolite with a new carbon skeleton from Keissleriella sp. YS4108, a marine filamentous fungus. Planta Med. 68: 363-365 https://doi.org/10.1055/s-2002-26756
  16. MacMillan, J. 2002. Occurence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Reg. 20: 387-442 https://doi.org/10.1007/s003440010038
  17. M$\acute{a}$rquez,, L. M., R. S. Redman, R. J. Rodriguez, and M. J. Roossinck. 2007. A virus in a fungus in a plant: Three-way symbioses required for thermal tolerance. Science 315: 513-515 https://doi.org/10.1126/science.1136237
  18. Martin, G. C. 1983. The Biochemistry and Physiology of Gibberellins, A. Crozier (ed.). Praeger, New York. 2: 395-444
  19. Nishijima, T., M. Koshioka, H. Yamazaki, and L. N. Mander. 1995. Endogenous gibberellins and bolting in cultivars of Japanese radish. Acta Hort. 394: 199-206
  20. Ogas, J. 2000. Gibberellins. Curr. Biol. 10: R48 https://doi.org/10.1016/S0960-9822(00)00292-X
  21. Rim, S. O., J. H. Lee, S. A. Khan, I. J. Lee, I. K. Rhee, K. S. Lee, and J. G. Kim. 2007. Isolation and identification of fungal strains producing gibberellins from the root of plants. Kor. J. Microbiol. Biotechnol. 35: 357-363
  22. Schulz, B. and C. Boyle. 2005. The endophytic continuum. Mycol. Res. 109: 661-686 https://doi.org/10.1017/S095375620500273X
  23. Selbmann, L., S. Onofri, M. Fenice, F. Federici, and M. Petruccioli. 2002. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res. Microbiol. 153: 585-592 https://doi.org/10.1016/S0923-2508(02)01372-4
  24. Sugita, T. and A. Nishikawa. 2003. Fungal identification method based on DNA sequence analysis. Reassessment of the methods of the pharmaceutical society of Japan and the Japanese pharmacopoeia. J. Health Sci. 49: 531-533 https://doi.org/10.1248/jhs.49.531
  25. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599 https://doi.org/10.1093/molbev/msm092
  26. Taskinen, T., T. Meklin, M. Nousiainen, T. Human, A. Nevalainen, and M. Korppi. 1997. Moisture and mould problems in schools and respiratory manifestations in schoolchildren: Clinical and skin test findings. Acta Paediatr. 86: 1181-1187 https://doi.org/10.1111/j.1651-2227.1997.tb14841.x
  27. Taylor, D. L. and T. D. Bruns. 1999. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: Minimal overlap between the mature forest and resistant propagule communities. Mol. Ecol. 8: 1837-1850 https://doi.org/10.1046/j.1365-294x.1999.00773.x
  28. Vandenbussche, F., A. C. Fierro, G. Wiedemann, R. Reski, and D. Van Der Straeten. 2007. Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol. 7:65 https://doi.org/10.1186/1471-2229-7-65
  29. V$\acute{a}$zquez, M. M., S. C$\acute{e}$sar, R. Azc$\acute{o}$n, and J$\acute{o}$se M. Barea. 2000. Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15: 261-272 https://doi.org/10.1016/S0929-1393(00)00075-5
  30. Vikrant, P., K. K. Verma, R. C. Rajak, and A. K. Pandey. 2006. Characterization of a phytotoxin from Phoma herbarum for management of Parthenium hysterophorus L. J. Phytopathol. 154: 461-468 https://doi.org/10.1111/j.1439-0434.2006.01129.x
  31. Vishniac, H. S. 1996. Biodiversity of yeasts and filamentous microfungi in terrestrial Antarctic ecosystems. Biodivers. Conserv. 5: 1365-1378 https://doi.org/10.1007/BF00051983
  32. Wagner, T. and M. Fischer. 2002. Proceedings towards a natural classification of worldwide taxa Phellinus s.l. and Inonotus s.l., and phylogenetic relationships of allied genera. Mycologia. 94:998-1016 https://doi.org/10.2307/3761866
  33. Waller, F., B. Achatz, H. Baltruschat, J$\acute{o}$zsef. Fodor, K. Becker, M. Fischer, H$\ddot{u}$ckelhoven, Ralph et al. 2005. The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Nat. Acad. Sci. U.S.A. 102: 13386-13391 https://doi.org/10.1073/pnas.0504423102
  34. Yamada, A., T. Ogura, Y. Degawa, and M. Ohmasa. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience. 42: 43-50 https://doi.org/10.1007/BF02463974
  35. Yang, X. B., X. D. Gao, F. B. Han, and R. X. Tan. 2005. Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro. B.B.A. Gen. Subj. 1725: 120-127 https://doi.org/10.1016/j.bbagen.2005.06.013
  36. Yang, X. B., X. D. Gao, F. B. Han, S. Xu, Y. C. Song, and R. X. Tan. 2005. Purification, characterization and enzymatic degradation of YCP, a polysaccharide from marine filamentous fungus Phoma herbarum YS4108. Biochimie. 87: 747-754 https://doi.org/10.1016/j.biochi.2005.03.004

Cited by

  1. Influence of prohexadione-calcium on growth and gibberellins content of Chinese cabbage grown in alpine region of South Korea vol.125, pp.2, 2009, https://doi.org/10.1016/j.scienta.2010.02.018
  2. Gibberellin-Producing Endophytic Fungi Isolated from Monochoria vaginalis vol.20, pp.12, 2010, https://doi.org/10.4014/jmb.1005.05018
  3. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses vol.143, pp.4, 2009, https://doi.org/10.1111/j.1399-3054.2011.01508.x
  4. Long‐term in situ dynamics of the fungal communities in a multi‐contaminated soil are mainly driven by plants vol.82, pp.1, 2012, https://doi.org/10.1111/j.1574-6941.2012.01414.x
  5. 해안 생태계 복원을 위한 울릉도에 자생하는 해안식물의 뿌리로부터 분리된 내생진균류의 유전적 다양성 분석 vol.22, pp.10, 2012, https://doi.org/10.5352/jls.2012.22.10.1384
  6. Cadophora malorum Cs‐8‐1 as a new fungal strain producing gibberellins isolated from Calystegia soldanella vol.53, pp.7, 2009, https://doi.org/10.1002/jobm.201200002
  7. Endophytes Aspergillus caespitosus LK12 and Phoma sp. LK13 of Moringa peregrina produce gibberellins and improve rice plant growth vol.9, pp.1, 2009, https://doi.org/10.1080/17429145.2014.917384
  8. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators vol.94, pp.9, 2009, https://doi.org/10.1002/jsfa.6545
  9. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth vol.52, pp.8, 2009, https://doi.org/10.1007/s12275-014-4002-7
  10. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance vol.35, pp.1, 2009, https://doi.org/10.3109/07388551.2013.800018
  11. Aspergillus clavatus Y2H0002 as a New Endophytic Fungal Strain Producing Gibberellins Isolated from Nymphoides peltata in Fresh Water vol.43, pp.1, 2015, https://doi.org/10.5941/myco.2015.43.1.87
  12. Aspergillus flavus Y2H001의 식물생육촉진과 Gibberellin A3의 생산 vol.43, pp.3, 2015, https://doi.org/10.4489/kjm.2015.43.3.200
  13. Plant-fungal interactions: What triggers the fungi to switch among lifestyles? vol.42, pp.3, 2009, https://doi.org/10.3109/1040841x.2014.958052
  14. Diverse Plant-Associated Pleosporalean Fungi from Saline Areas: Ecological Tolerance and Nitrogen-Status Dependent Effects on Plant Growth vol.8, pp.None, 2009, https://doi.org/10.3389/fmicb.2017.00158
  15. Report of Phoma herbarum Causing Leaf Spot Disease of Camellia sinensis in China vol.102, pp.11, 2018, https://doi.org/10.1094/pdis-01-18-0121-pdn
  16. Fungal Diversity and Community Composition of Culturable Fungi in Stanhopea trigrina Cast Gibberellin Producers vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.00612
  17. Fungal-Bacterial Networks in the Populus Rhizobiome Are Impacted by Soil Properties and Host Genotype vol.10, pp.None, 2009, https://doi.org/10.3389/fmicb.2019.00481
  18. Exploring the natural microbiome of the model liverwort: fungal endophyte diversity in Marchantia polymorpha L vol.78, pp.1, 2009, https://doi.org/10.1007/s13199-019-00597-4
  19. First Report of Leaf Blight Caused by Arthrinium arundinis on Tea Plants in China vol.103, pp.12, 2009, https://doi.org/10.1094/pdis-06-19-1324-pdn
  20. Biochemical characterization of multifunctional endophytic fungi from Bambusa oldhamii Munro vol.50, pp.None, 2009, https://doi.org/10.1590/1983-40632020v5066370
  21. Endophytic Fungi of Olive Tree vol.8, pp.9, 2009, https://doi.org/10.3390/microorganisms8091321
  22. Plant performance of enhancing licorice with dual inoculating dark septate endophytes and Trichoderma viride mediated via effects on root development vol.20, pp.None, 2009, https://doi.org/10.1186/s12870-020-02535-9
  23. First Report of Arthrinium kogelbergense Causing Blight Disease of Bambusa intermedia in Sichuan Province, China vol.105, pp.1, 2009, https://doi.org/10.1094/pdis-06-20-1159-pdn
  24. Mycobiota Associated with the Vascular Wilt of Poplar vol.10, pp.5, 2009, https://doi.org/10.3390/plants10050892