DOI QR코드

DOI QR Code

Construction of a Recombinant Bacillus velezensis Strain as an Integrated Control Agent Against Plant Diseases and Insect Pests

  • Roh, Jong-Yul (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Liu, Qin (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Jae-Young (Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Wang, Yong (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Shim, Hee-Jin (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Xu, Hong Guang (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Gyung-Ja (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Je, Yeon-Ho (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • Published : 2009.10.31

Abstract

To construct a new recombinant strain of Bacillus velezensis that has antifungal and insecticidal activity via the expression of the insecticidal Bacillus thuringiensis crystal protein, a B. thuringiensis expression vector (pHT1K-1Ac) was generated that contained the B. thuringiensis cry1Ac gene under the control of its endogenous promoter in a minimal E. coli-B. thuringiensis shuttle vector (pHT1K). This vector was introduced into a B. velezensis isolate that showed high antifungal activities against several plant diseases, including rice blast (Magnaporthe grisea), rice sheath blight (Rhizotonia solani), tomato gray mold (Botrytis cinerea), tomato late blight (Phytophthora infestans), and wheat leaf rust (Puccinia recondita), by electroporation. The recombinant B. velezensis strain was confirmed by PCR using cry1Ac-specific primers. Additionally, the recombinant strain produced a protein approximately 130 kDa in size and parasporal inclusion bodies similar to B. thuringiensis. The in vivo antifungal activity assay demonstrated that the activity of the recombinant B. velezensis strain was maintained at the same level as that of wild-type B. velezensis. Furthermore, it exhibited high insecticidal activity against a lepidopteran pest, Plutella xylostella, although its activity was lower than that of a recombinant B. thuringiensis strain, whereas wild-type B. velezensis strain did not show any insecticidal activity. These results suggest that this recombinant B. velezensis strain can be used to control harmful insect pests and fungal diseases simultaneously in one crop.

Keywords

References

  1. Alcantara, E. P., R. M. Aguda, A. Curtiss, D. H. Dean, and M. B. Cohen. 2004. Bacillus thuringiensis $delta$-endotoxin binding to brush border membrane vesicles of rice stem borers. Arch. Insect Biochem. Physiol. 55: 169-177 https://doi.org/10.1002/arch.10128
  2. Bafana, A., T. Chakrabarti, and S. S. Devi. 2008. Azoreductase and dye detoxification activities of Bacillus velezensis strain AB. Appl. Microbiol. Biotechnol. 77: 1139-1144 https://doi.org/10.1007/s00253-007-1212-5
  3. Bora, R. S., M. G. Murty, R. Shenbagarathai, and V. Sekar. 1994. Introduction of a lepidopteran-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phyllosphere. Appl. Environ. Microbiol. 60: 214-222
  4. Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000 https://doi.org/10.1046/j.1365-2672.2003.02089.x
  5. Choi, G. J., J. C. Kim, K. S. Jang, and D. H. Lee. 2007. Antifungal activities of Bacillus thuringiensis isolates on barley and cucumber powdery mildews. J. Microbiol. Biotechnol. 17:2071-2075
  6. Driss, F., M. Kallassy-Awad, N. Zouari, and S. Jaoua. 2005. Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J. Appl. Microbiol. 99: 945-953 https://doi.org/10.1111/j.1365-2672.2005.02639.x
  7. Guerchicoff, A., C. P. Rubinstein, and R. A. Ugalde. 1996. Introduction and expression of an anti-dipteran toxin gene from B. thuringiensis in nodulating rhizobia. Cell. Mol. Biol. (Noisyle-grand) 42: 729-735
  8. Herrera, G., S. J. Snyman, and J. A. Thomson. 1994. Construction of a bioinsecticidal strain of Pseudomonas fluorescens active against the sugarcane borer, Eldana saccharina. Appl. Environ. Microbiol. 60: 682-690
  9. Hiradate, S., S. Yoshida, H. Sugie, H. Yada, and Y. Fujii. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61: 693-698 https://doi.org/10.1016/S0031-9422(02)00365-5
  10. Hou, X., S. M. Boyetchko, M. Brkic, D. Olson, A. Ross, and D. Hegedus. 2006. Characterization of the antifungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl. Microbiol. Biotechnol. 72: 644-653
  11. Kalman, S., K. L. Kiehne, J. L. Libs, and T. Yamamoto. 1993. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl. Environ. Microbiol. 59:1131-1137
  12. Kang, J. N., J. Y. Roh, S. C. Shin, S. H. Ko, Y. J. Chung, Y.-S. Kim, et al. 2007. Dual insecticidal activity of Spodoptera-toxic Bacillus thuringiensis strain transformed with lepidopteran Cry toxin. J. Asia Pacific Entomol. 10: 137-143 https://doi.org/10.1016/S1226-8615(08)60344-1
  13. Karim, S. and D. H. Dean. 2000. Toxicity and receptor binding properties of Bacillus thuringiensis delta-endotoxins to the midgut brush border membrane vesicles of the rice leaf folders, Cnaphalocrocis medinalis and Marasmia patnalis. Curr. Microbiol. 41: 276-283 https://doi.org/10.1007/s002840010134
  14. Kim, P. I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and Y. T. Chi. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97: 942-949 https://doi.org/10.1111/j.1365-2672.2004.02356.x
  15. Kim, P. I. and K. C. Chung. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234: 177-183
  16. Lereclus, D., O. Arantes, J. Chaufaux, and M. Lecadet. 1989. Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 51: 211-217 https://doi.org/10.1111/j.1574-6968.1988.tb02999.x
  17. Lereclus, D., S. Guo, V. Sanchis, and M.-M. Lecadet. 1988. Characterization of two Bacillus thuringiensis plasmids whose replication is thermosensitive in B. subtilis. FEMS Microbiol. Lett. 49: 417-422 https://doi.org/10.1111/j.1574-6968.1988.tb02768.x
  18. Moar, W. J., J. T. Trumble, R. H. Hice, and P. A. Backman. 1994. Insecticidal activity of the CryIIA protein from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leafcolonizing strain of Bacillus cereus. Appl. Environ. Microbiol. 60: 896-902
  19. Murphy, R. C. and S. E. Stevens Jr. 1992. Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 58:1650-1655
  20. Ohse, M., K. Takahashi, Y. Kadowaki, and H. Kusaoke. 1995. Effects of plasmid DNA sizes and several other factors on transformation of Bacillus subtilis ISW1214 with plasmid DNA by electroporation. Biosci. Biotechnol. Biochem. 59: 1433-1437 https://doi.org/10.1271/bbb.59.1433
  21. Patel, V. J., S. R. Tendulkar, and B. B. Chattoo. 2004. Bioprocess development for the production of an antifungal molecule by Bacillus licheniformis BC98. J. Biosci. Bioeng. 98:231-235
  22. Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559
  23. Ruiz-Garc$\acute{i}$a, C., Victoria B$\acute{e}$jar, Fernando Martinez-Checa, Inmaculada Llamas, and Emilia Quesada. 2005. Bacillus velezensis sp. nov., a surfactantproducing bacterium isolated from the river Velez in Malaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 191-195 https://doi.org/10.1099/ijs.0.63310-0
  24. Sayyed, A. H., N. Crickmore, and D. J. Wright. 2001. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl. Environ. Microbiol. 67: 5859-5861 https://doi.org/10.1128/AEM.67.12.5859-5861.2001
  25. Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17 https://doi.org/10.1139/w03-076
  26. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806
  27. Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857 https://doi.org/10.1111/j.1365-2958.2005.04587.x
  28. Tendulkar, S. R., Y. K. Saikumari, V. Patel, S. Raghotama, T. K. Munshi, P. Balaram, and B. B. Chattoo. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol. 103:2331-2339 https://doi.org/10.1111/j.1365-2672.2007.03501.x
  29. Theoduloz, C., A. Vega, M. Salazar, E. Gonz$\acute{a}$lez, and L. Meza-Basso. 2003. Expression of a Bacillus thuringiensis deltaendotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills). J. Appl. Microbiol. 94: 375-381 https://doi.org/10.1046/j.1365-2672.2003.01840.x
  30. Wang, G., J. Zhang, F. Song, A. Gu, A. Uwais, T. Shao, and D. Huang. 2008. Recombinant Bacillus thuringiensis strain shows high insecticidal activity against Plutella xylostella and Leptinotarsa decemlineata without affecting nontarget species in the field. J. Appl. Microbiol. 105: 1536-1543 https://doi.org/10.1111/j.1365-2672.2008.03866.x
  31. Wang, J., J. Liu, H. Chen, and J. Yao. 2007. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 76: 889-894 https://doi.org/10.1007/s00253-007-1054-1
  32. Wang, L. T., F. L. Lee, C. J. Tai, and H. P. Kuo. 2008. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 58: 671-675 https://doi.org/10.1099/ijs.0.65191-0
  33. Yang, C. Y., Y. C. Ho, J. C. Pang, S. S. Huang, and J. S. Tschen. 2009. Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field. Bioresour. Technol. 100: 1454-1458 https://doi.org/10.1016/j.biortech.2008.07.039
  34. Zhou, Y., Y. L. Choi, M. Sun, and Z. Yu. 2008. Novel roles of Bacillus thuringiensis to control plant diseases. Appl. Microbiol. Biotechnol. 80: 563-572 https://doi.org/10.1007/s00253-008-1610-3
  35. Zhu, B. 2006. Degradation of plasmid and plant DNA in water microcosms monitored by natural transformation and real-time polymerase chain reaction (PCR). Water Res. 40: 3231-3238

Cited by

  1. 감귤저장병 병원균 Penicillium digitatum 방제를 위한 길항 내생세균 Bacillus velezensis CB3의 분리 및 특성 규명 vol.40, pp.2, 2009, https://doi.org/10.4489/kjm.2012.40.2.118
  2. The two-component signal transduction system YvcPQ regulates the bacterial resistance to bacitracin in Bacillus thuringiensis vol.198, pp.8, 2009, https://doi.org/10.1007/s00203-016-1239-z
  3. Genomic characterization of bacteriophage vB_PcaP_PP2 infecting Pectobacterium carotovorum subsp. carotovorum , a new member of a proposed genus in the subfamily Autographivirinae vol.162, pp.8, 2017, https://doi.org/10.1007/s00705-017-3349-6
  4. Assessment of the Antimicrobial Activity and the Entomocidal Potential of Bacillus thuringiensis Isolates from Algeria vol.9, pp.4, 2017, https://doi.org/10.3390/toxins9040139
  5. Complete Genome Sequence of Bacillus velezensis GQJK49, a Plant Growth-Promoting Rhizobacterium with Antifungal Activity vol.5, pp.35, 2009, https://doi.org/10.1128/genomea.00922-17
  6. Characteristics and Application of a Novel Species of Bacillus: Bacillus velezensis vol.13, pp.3, 2009, https://doi.org/10.1021/acschembio.7b00874
  7. Suppression of Fusarium wilt of banana by combining acid soil ameliorant with biofertilizer made from Bacillus velezensis H-6 vol.154, pp.3, 2009, https://doi.org/10.1007/s10658-019-01683-5