References
-
Alcantara, E. P., R. M. Aguda, A. Curtiss, D. H. Dean, and M. B. Cohen. 2004. Bacillus thuringiensis
$delta$ -endotoxin binding to brush border membrane vesicles of rice stem borers. Arch. Insect Biochem. Physiol. 55: 169-177 https://doi.org/10.1002/arch.10128 - Bafana, A., T. Chakrabarti, and S. S. Devi. 2008. Azoreductase and dye detoxification activities of Bacillus velezensis strain AB. Appl. Microbiol. Biotechnol. 77: 1139-1144 https://doi.org/10.1007/s00253-007-1212-5
- Bora, R. S., M. G. Murty, R. Shenbagarathai, and V. Sekar. 1994. Introduction of a lepidopteran-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phyllosphere. Appl. Environ. Microbiol. 60: 214-222
- Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000 https://doi.org/10.1046/j.1365-2672.2003.02089.x
- Choi, G. J., J. C. Kim, K. S. Jang, and D. H. Lee. 2007. Antifungal activities of Bacillus thuringiensis isolates on barley and cucumber powdery mildews. J. Microbiol. Biotechnol. 17:2071-2075
- Driss, F., M. Kallassy-Awad, N. Zouari, and S. Jaoua. 2005. Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J. Appl. Microbiol. 99: 945-953 https://doi.org/10.1111/j.1365-2672.2005.02639.x
- Guerchicoff, A., C. P. Rubinstein, and R. A. Ugalde. 1996. Introduction and expression of an anti-dipteran toxin gene from B. thuringiensis in nodulating rhizobia. Cell. Mol. Biol. (Noisyle-grand) 42: 729-735
- Herrera, G., S. J. Snyman, and J. A. Thomson. 1994. Construction of a bioinsecticidal strain of Pseudomonas fluorescens active against the sugarcane borer, Eldana saccharina. Appl. Environ. Microbiol. 60: 682-690
- Hiradate, S., S. Yoshida, H. Sugie, H. Yada, and Y. Fujii. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61: 693-698 https://doi.org/10.1016/S0031-9422(02)00365-5
- Hou, X., S. M. Boyetchko, M. Brkic, D. Olson, A. Ross, and D. Hegedus. 2006. Characterization of the antifungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl. Microbiol. Biotechnol. 72: 644-653
- Kalman, S., K. L. Kiehne, J. L. Libs, and T. Yamamoto. 1993. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl. Environ. Microbiol. 59:1131-1137
- Kang, J. N., J. Y. Roh, S. C. Shin, S. H. Ko, Y. J. Chung, Y.-S. Kim, et al. 2007. Dual insecticidal activity of Spodoptera-toxic Bacillus thuringiensis strain transformed with lepidopteran Cry toxin. J. Asia Pacific Entomol. 10: 137-143 https://doi.org/10.1016/S1226-8615(08)60344-1
- Karim, S. and D. H. Dean. 2000. Toxicity and receptor binding properties of Bacillus thuringiensis delta-endotoxins to the midgut brush border membrane vesicles of the rice leaf folders, Cnaphalocrocis medinalis and Marasmia patnalis. Curr. Microbiol. 41: 276-283 https://doi.org/10.1007/s002840010134
- Kim, P. I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and Y. T. Chi. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97: 942-949 https://doi.org/10.1111/j.1365-2672.2004.02356.x
- Kim, P. I. and K. C. Chung. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234: 177-183
- Lereclus, D., O. Arantes, J. Chaufaux, and M. Lecadet. 1989. Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 51: 211-217 https://doi.org/10.1111/j.1574-6968.1988.tb02999.x
- Lereclus, D., S. Guo, V. Sanchis, and M.-M. Lecadet. 1988. Characterization of two Bacillus thuringiensis plasmids whose replication is thermosensitive in B. subtilis. FEMS Microbiol. Lett. 49: 417-422 https://doi.org/10.1111/j.1574-6968.1988.tb02768.x
- Moar, W. J., J. T. Trumble, R. H. Hice, and P. A. Backman. 1994. Insecticidal activity of the CryIIA protein from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leafcolonizing strain of Bacillus cereus. Appl. Environ. Microbiol. 60: 896-902
- Murphy, R. C. and S. E. Stevens Jr. 1992. Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 58:1650-1655
- Ohse, M., K. Takahashi, Y. Kadowaki, and H. Kusaoke. 1995. Effects of plasmid DNA sizes and several other factors on transformation of Bacillus subtilis ISW1214 with plasmid DNA by electroporation. Biosci. Biotechnol. Biochem. 59: 1433-1437 https://doi.org/10.1271/bbb.59.1433
- Patel, V. J., S. R. Tendulkar, and B. B. Chattoo. 2004. Bioprocess development for the production of an antifungal molecule by Bacillus licheniformis BC98. J. Biosci. Bioeng. 98:231-235
- Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559
-
Ruiz-Garc
$\acute{i}$ a, C., Victoria B$\acute{e}$ jar, Fernando Martinez-Checa, Inmaculada Llamas, and Emilia Quesada. 2005. Bacillus velezensis sp. nov., a surfactantproducing bacterium isolated from the river Velez in Malaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 191-195 https://doi.org/10.1099/ijs.0.63310-0 - Sayyed, A. H., N. Crickmore, and D. J. Wright. 2001. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl. Environ. Microbiol. 67: 5859-5861 https://doi.org/10.1128/AEM.67.12.5859-5861.2001
- Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17 https://doi.org/10.1139/w03-076
- Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806
- Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857 https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Tendulkar, S. R., Y. K. Saikumari, V. Patel, S. Raghotama, T. K. Munshi, P. Balaram, and B. B. Chattoo. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol. 103:2331-2339 https://doi.org/10.1111/j.1365-2672.2007.03501.x
-
Theoduloz, C., A. Vega, M. Salazar, E. Gonz
$\acute{a}$ lez, and L. Meza-Basso. 2003. Expression of a Bacillus thuringiensis deltaendotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills). J. Appl. Microbiol. 94: 375-381 https://doi.org/10.1046/j.1365-2672.2003.01840.x - Wang, G., J. Zhang, F. Song, A. Gu, A. Uwais, T. Shao, and D. Huang. 2008. Recombinant Bacillus thuringiensis strain shows high insecticidal activity against Plutella xylostella and Leptinotarsa decemlineata without affecting nontarget species in the field. J. Appl. Microbiol. 105: 1536-1543 https://doi.org/10.1111/j.1365-2672.2008.03866.x
- Wang, J., J. Liu, H. Chen, and J. Yao. 2007. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 76: 889-894 https://doi.org/10.1007/s00253-007-1054-1
- Wang, L. T., F. L. Lee, C. J. Tai, and H. P. Kuo. 2008. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 58: 671-675 https://doi.org/10.1099/ijs.0.65191-0
- Yang, C. Y., Y. C. Ho, J. C. Pang, S. S. Huang, and J. S. Tschen. 2009. Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field. Bioresour. Technol. 100: 1454-1458 https://doi.org/10.1016/j.biortech.2008.07.039
- Zhou, Y., Y. L. Choi, M. Sun, and Z. Yu. 2008. Novel roles of Bacillus thuringiensis to control plant diseases. Appl. Microbiol. Biotechnol. 80: 563-572 https://doi.org/10.1007/s00253-008-1610-3
- Zhu, B. 2006. Degradation of plasmid and plant DNA in water microcosms monitored by natural transformation and real-time polymerase chain reaction (PCR). Water Res. 40: 3231-3238
Cited by
- 감귤저장병 병원균 Penicillium digitatum 방제를 위한 길항 내생세균 Bacillus velezensis CB3의 분리 및 특성 규명 vol.40, pp.2, 2009, https://doi.org/10.4489/kjm.2012.40.2.118
- The two-component signal transduction system YvcPQ regulates the bacterial resistance to bacitracin in Bacillus thuringiensis vol.198, pp.8, 2009, https://doi.org/10.1007/s00203-016-1239-z
- Genomic characterization of bacteriophage vB_PcaP_PP2 infecting Pectobacterium carotovorum subsp. carotovorum , a new member of a proposed genus in the subfamily Autographivirinae vol.162, pp.8, 2017, https://doi.org/10.1007/s00705-017-3349-6
- Assessment of the Antimicrobial Activity and the Entomocidal Potential of Bacillus thuringiensis Isolates from Algeria vol.9, pp.4, 2017, https://doi.org/10.3390/toxins9040139
- Complete Genome Sequence of Bacillus velezensis GQJK49, a Plant Growth-Promoting Rhizobacterium with Antifungal Activity vol.5, pp.35, 2009, https://doi.org/10.1128/genomea.00922-17
- Characteristics and Application of a Novel Species of Bacillus: Bacillus velezensis vol.13, pp.3, 2009, https://doi.org/10.1021/acschembio.7b00874
- Suppression of Fusarium wilt of banana by combining acid soil ameliorant with biofertilizer made from Bacillus velezensis H-6 vol.154, pp.3, 2009, https://doi.org/10.1007/s10658-019-01683-5