DOI QR코드

DOI QR Code

Selective Plugging Strategy Based Microbial Enhanced Oil Recovery Using Bacillus licheniformis TT33

  • Suthar, Harish (Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda) ;
  • Hingurao, Krushi (Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda) ;
  • Desai, Anjana (Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda) ;
  • Nerurkar, Anuradha (Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda)
  • Published : 2009.10.31

Abstract

The selective plugging strategy of Microbial Enhanced Oil Recovery (MEOR) involves the use of microbes that grow and produce exopolymeric substances, which block the high permeability zones of an oil reservoir, thus allowing the water to flow through the low permeability zones leading to increase in oil recovery. Bacillus licheniformis TT33, a hot water spring isolate, is facultatively anaerobic, halotolerant, and thermotolerant. It produces EPS as well as biosurfactant and has a biofilm-forming ability. The viscosity of its cell-free supernatant is $120\;mPa{\cdot}s$ at $28^{\circ}C$. Its purified EPS contained 26% carbohydrate and 3% protein. Its biosurfactant reduced the surface tension of water from 72 to 34 mN/m. This strain gave $27.7{\pm}3.5%$ oil recovery in a sand pack column. Environmental scanning electron microscopy analysis showed bacterial growth and biofilm formation in the sand pack. Biochemical tests and Amplified Ribosomal DNA Restriction Analysis confirmed that the oil recovery obtained in the sand pack column was due to Bacillus licheniformis TT33.

Keywords

References

  1. Almeida, P. F., R. S. Moreira, R. C. Almeida, A. K. Guimar$\tilde{a}$es, A. S. Carvalho, C. Quintella, M. C. Esperidia, and C. A. Taft. 2004. Selection and application of microorganisms to improve oil recovery. Eng. Life Sci. 4: 319-325 https://doi.org/10.1002/elsc.200420033
  2. Bais, H. P., R. Fall, and J. M. Vivanco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319 https://doi.org/10.1104/pp.103.028712
  3. Banat, I. M. 1995. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation:A review. Bioresource Technol. 51: 1-12 https://doi.org/10.1016/0960-8524(94)00101-6
  4. Bryant, R. S., A. K. Stepp, K. M. Bertus, T. E. Burchfield, and M. Dennis. 1993. Microbial enhanced waterflooding field pilots. Bioresource Technol. Dev. Petr. Sci. 39: 289-306 https://doi.org/10.1016/S0376-7361(09)70067-6
  5. Cooper, D. G. and B. G. Goldenberg. 1987. Surface active agents from two Bacillus species. Appl. Environ. Microbiol. 51:224-229
  6. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  7. Dunsmore, B. C., C. J. Bass, and H. M. Lappin-Scott. 2004. A novel approach to investigate biofilm accumulation and bacterial transport in porous matrices. Environ. Microbiol. 6: 183-187 https://doi.org/10.1046/j.1462-2920.2003.00546.x
  8. Edwards, J. D. 1997. Crude oil and alternate energy production forecasts for the twenty-first century: the end of the hydrocarbon era. AAPG Bulletin. 81
  9. Heydorn, A., A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersb$\phi$ll, and S. Molin. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146: 2395-2407
  10. Jang, L. K., P. W. Chang, J. E. Findley, and T. F. Yen. 1983. Selection of bacteria with favorable transport properties through porous rock for the application of microbial enhanced oil recovery. Appl. Environ. Microbiol. 46: 1066-1072
  11. Jenneman, G. E., M. J. McInerney, and R. M. Knapp. 1985. Microbial penetration through nutrient-saturated berea sandstone. Appl. Environ. Microbiol. 50: 383-391
  12. Jenny, K., O. Kappeli, and A. Fiechter. 1991. Biosurfactants from Bacillus licheniformis: Structural analysis and characterization. Appl. Microbiol. Biotechnol. 36: 5-13 https://doi.org/10.1007/BF00164690
  13. Kierek, K. and P. I. Watnick. 2003. The Vibrio cholerae O139 O-antigen polysaccharide is essential for $Ca^{2+}$-dependent biofilm development in sea water. Proc. Natl. Acad. Sci. U.S.A. 100:14357-14362 https://doi.org/10.1073/pnas.2334614100
  14. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265-275
  15. McInerney, M. J., R. M. Knapp, J. L. Chisholm, V. K. Bhupathiraju, and J. D. Coates. 1999. Use of indigenous or injected microorganisms for enhanced oil recovery microbial ecology of oil fields. In C. R. Bell, M. Brylinsky, and P. Johnson-Green (eds.). Microbial Biosystems: New Frontiers, Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada
  16. McInerney, M. J., M. Javaheri, and D. P. Nagle. 1990. Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J. Ind. Microbiol. 5: 95-101 https://doi.org/10.1007/BF01573858
  17. Okutani, K. 1984. Antitumour and immunostimulant activities of polysaccharides produced by a marine bacterium of the genus Vibrio. Bull. Jap. Soc. Sci. Fish. 50: 1035-1037 https://doi.org/10.2331/suisan.50.1035
  18. Portwood, J. T. 1995. A commercial microbial enhanced oil recovery process: Statistical evaluation of a multi-project database, pp. 51-76. In R. S. Bryant and L. K. Sublette (eds.). The Fifth International Conference on Microbial Enhanced Oil Recovery and Related Biotechnology for Solving Environmental Problems
  19. Raiders, R. A., R. M. Knapp, and M. J. McInerney. 1989. Microbial selective plugging and enhanced oil recovery. J. Ind. Microbiol. 4: 215-230 https://doi.org/10.1007/BF01574079
  20. Raiders, R. A., M. J. McInerney, D. E. Revus, H. M. Torbati, R. M. Knapp, and G. E. Jenneman. 1986. Selectivity and depth of microbial plugging in Berea sandstone cores. J. Ind. Microbiol. 1: 195-203 https://doi.org/10.1007/BF01569272
  21. Sneath, P. H. A. 1986. Endospore-forming Gram-positive rods and cocci, pp. 1104-1207. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, 9th Ed. The Williams & Wilkins Co., Baltimore
  22. Suthar, H., K. Hingurao, A. Desai, and A. Nerurkar. 2008. Evaluation of bioemulsifier mediated microbial enhanced oil recovery using sand pack column. J. Microbiol. Methods 75:225-230 https://doi.org/10.1016/j.mimet.2008.06.007
  23. Torbati, H. M., R. A. Raiders, E. C. Donaldson, M. J. McInerney, G. E. Jenneman, and R. M. Knapp. 1986. Effect of microbial growth on pore entrance size distribution in sandstone cores. J. Ind. Microbiol. 1: 227-234 https://doi.org/10.1007/BF01569276
  24. Yakimov, M. M., M. M. Amro, M. Bock, K. Boseker, H. L. Fredrickson, D. G. Kessel, and K. N. Timmis. 1997. The potential of Bacillus licheniformis strains for enhanced oil recovery. J. Petr. Sci. Eng. 18: 147-160 https://doi.org/10.1016/S0920-4105(97)00015-6

Cited by

  1. Replacement of Hexachlorocyclohexane to Environmentally Friendly Biosurfactant as Precursor for the Production of Biosurfactant from Pseudomonas vol.21, pp.8, 2009, https://doi.org/10.4014/jmb.1012.12024
  2. Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation vol.92, pp.3, 2009, https://doi.org/10.1007/s11242-011-9934-3
  3. Investigating the pore-scale mechanisms of microbial enhanced oil recovery vol.94, pp.None, 2009, https://doi.org/10.1016/j.petrol.2012.06.031
  4. Effect of porous media types on oil recovery by indigenous microorganisms from a Mexican oil field vol.88, pp.6, 2009, https://doi.org/10.1002/jctb.3926
  5. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery vol.180, pp.2, 2009, https://doi.org/10.1007/s12010-016-2096-6
  6. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review vol.4, pp.None, 2009, https://doi.org/10.3389/fbioe.2016.00004
  7. Laboratory Investigation of Indigenous Consortia TERIJ-188 for Incremental Oil Recovery vol.9, pp.None, 2009, https://doi.org/10.3389/fmicb.2018.02357
  8. Pore-scale investigation of selective plugging mechanism in immiscible two-phase flow using phase-field method vol.74, pp.None, 2009, https://doi.org/10.2516/ogst/2019050
  9. The biopolymer produced by Rhizobium viscosum CECT 908 is a promising agent for application in microbial enhanced oil recovery vol.49, pp.None, 2009, https://doi.org/10.1016/j.nbt.2018.11.002
  10. Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels vol.46, pp.6, 2009, https://doi.org/10.1007/s10295-019-02161-x
  11. Systematic Modeling Approach to Selective Plugging UsingIn SituBacterial Biopolymer Production and Its Potential for Microbial-enhanced Oil Recovery vol.36, pp.5, 2009, https://doi.org/10.1080/01490451.2019.1573277
  12. Evaluation of Microencapsulation Techniques for MICP Bacterial Spores Applied in Self-Healing Concrete vol.9, pp.1, 2009, https://doi.org/10.1038/s41598-019-49002-6
  13. Oil reservoir simulating bioreactors: tools for understanding petroleum microbiology vol.104, pp.3, 2009, https://doi.org/10.1007/s00253-019-10311-5
  14. Potential applications of microbial enhanced oil recovery to heavy oil vol.40, pp.4, 2020, https://doi.org/10.1080/07388551.2020.1739618
  15. Application of Polysaccharide Biopolymer in Petroleum Recovery vol.12, pp.9, 2009, https://doi.org/10.3390/polym12091860
  16. Mathematical Modeling, Laboratory Experiments, and Sensitivity Analysis of Bioplug Technology at Darcy Scale vol.25, pp.6, 2020, https://doi.org/10.2118/201247-pa
  17. Extracellular Polymeric Substances Production by ZL-02 For Microbial Enhanced Oil Recovery vol.60, pp.2, 2009, https://doi.org/10.1021/acs.iecr.0c05130