References
-
Almeida, P. F., R. S. Moreira, R. C. Almeida, A. K. Guimar
$\tilde{a}$ es, A. S. Carvalho, C. Quintella, M. C. Esperidia, and C. A. Taft. 2004. Selection and application of microorganisms to improve oil recovery. Eng. Life Sci. 4: 319-325 https://doi.org/10.1002/elsc.200420033 - Bais, H. P., R. Fall, and J. M. Vivanco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319 https://doi.org/10.1104/pp.103.028712
- Banat, I. M. 1995. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation:A review. Bioresource Technol. 51: 1-12 https://doi.org/10.1016/0960-8524(94)00101-6
- Bryant, R. S., A. K. Stepp, K. M. Bertus, T. E. Burchfield, and M. Dennis. 1993. Microbial enhanced waterflooding field pilots. Bioresource Technol. Dev. Petr. Sci. 39: 289-306 https://doi.org/10.1016/S0376-7361(09)70067-6
- Cooper, D. G. and B. G. Goldenberg. 1987. Surface active agents from two Bacillus species. Appl. Environ. Microbiol. 51:224-229
- Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
- Dunsmore, B. C., C. J. Bass, and H. M. Lappin-Scott. 2004. A novel approach to investigate biofilm accumulation and bacterial transport in porous matrices. Environ. Microbiol. 6: 183-187 https://doi.org/10.1046/j.1462-2920.2003.00546.x
- Edwards, J. D. 1997. Crude oil and alternate energy production forecasts for the twenty-first century: the end of the hydrocarbon era. AAPG Bulletin. 81
-
Heydorn, A., A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersb
$\phi$ ll, and S. Molin. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146: 2395-2407 - Jang, L. K., P. W. Chang, J. E. Findley, and T. F. Yen. 1983. Selection of bacteria with favorable transport properties through porous rock for the application of microbial enhanced oil recovery. Appl. Environ. Microbiol. 46: 1066-1072
- Jenneman, G. E., M. J. McInerney, and R. M. Knapp. 1985. Microbial penetration through nutrient-saturated berea sandstone. Appl. Environ. Microbiol. 50: 383-391
- Jenny, K., O. Kappeli, and A. Fiechter. 1991. Biosurfactants from Bacillus licheniformis: Structural analysis and characterization. Appl. Microbiol. Biotechnol. 36: 5-13 https://doi.org/10.1007/BF00164690
-
Kierek, K. and P. I. Watnick. 2003. The Vibrio cholerae O139 O-antigen polysaccharide is essential for
$Ca^{2+}$ -dependent biofilm development in sea water. Proc. Natl. Acad. Sci. U.S.A. 100:14357-14362 https://doi.org/10.1073/pnas.2334614100 - Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265-275
- McInerney, M. J., R. M. Knapp, J. L. Chisholm, V. K. Bhupathiraju, and J. D. Coates. 1999. Use of indigenous or injected microorganisms for enhanced oil recovery microbial ecology of oil fields. In C. R. Bell, M. Brylinsky, and P. Johnson-Green (eds.). Microbial Biosystems: New Frontiers, Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada
- McInerney, M. J., M. Javaheri, and D. P. Nagle. 1990. Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J. Ind. Microbiol. 5: 95-101 https://doi.org/10.1007/BF01573858
- Okutani, K. 1984. Antitumour and immunostimulant activities of polysaccharides produced by a marine bacterium of the genus Vibrio. Bull. Jap. Soc. Sci. Fish. 50: 1035-1037 https://doi.org/10.2331/suisan.50.1035
- Portwood, J. T. 1995. A commercial microbial enhanced oil recovery process: Statistical evaluation of a multi-project database, pp. 51-76. In R. S. Bryant and L. K. Sublette (eds.). The Fifth International Conference on Microbial Enhanced Oil Recovery and Related Biotechnology for Solving Environmental Problems
- Raiders, R. A., R. M. Knapp, and M. J. McInerney. 1989. Microbial selective plugging and enhanced oil recovery. J. Ind. Microbiol. 4: 215-230 https://doi.org/10.1007/BF01574079
- Raiders, R. A., M. J. McInerney, D. E. Revus, H. M. Torbati, R. M. Knapp, and G. E. Jenneman. 1986. Selectivity and depth of microbial plugging in Berea sandstone cores. J. Ind. Microbiol. 1: 195-203 https://doi.org/10.1007/BF01569272
- Sneath, P. H. A. 1986. Endospore-forming Gram-positive rods and cocci, pp. 1104-1207. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, 9th Ed. The Williams & Wilkins Co., Baltimore
- Suthar, H., K. Hingurao, A. Desai, and A. Nerurkar. 2008. Evaluation of bioemulsifier mediated microbial enhanced oil recovery using sand pack column. J. Microbiol. Methods 75:225-230 https://doi.org/10.1016/j.mimet.2008.06.007
- Torbati, H. M., R. A. Raiders, E. C. Donaldson, M. J. McInerney, G. E. Jenneman, and R. M. Knapp. 1986. Effect of microbial growth on pore entrance size distribution in sandstone cores. J. Ind. Microbiol. 1: 227-234 https://doi.org/10.1007/BF01569276
- Yakimov, M. M., M. M. Amro, M. Bock, K. Boseker, H. L. Fredrickson, D. G. Kessel, and K. N. Timmis. 1997. The potential of Bacillus licheniformis strains for enhanced oil recovery. J. Petr. Sci. Eng. 18: 147-160 https://doi.org/10.1016/S0920-4105(97)00015-6
Cited by
- Replacement of Hexachlorocyclohexane to Environmentally Friendly Biosurfactant as Precursor for the Production of Biosurfactant from Pseudomonas vol.21, pp.8, 2009, https://doi.org/10.4014/jmb.1012.12024
- Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation vol.92, pp.3, 2009, https://doi.org/10.1007/s11242-011-9934-3
- Investigating the pore-scale mechanisms of microbial enhanced oil recovery vol.94, pp.None, 2009, https://doi.org/10.1016/j.petrol.2012.06.031
- Effect of porous media types on oil recovery by indigenous microorganisms from a Mexican oil field vol.88, pp.6, 2009, https://doi.org/10.1002/jctb.3926
- Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery vol.180, pp.2, 2009, https://doi.org/10.1007/s12010-016-2096-6
- Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review vol.4, pp.None, 2009, https://doi.org/10.3389/fbioe.2016.00004
- Laboratory Investigation of Indigenous Consortia TERIJ-188 for Incremental Oil Recovery vol.9, pp.None, 2009, https://doi.org/10.3389/fmicb.2018.02357
- Pore-scale investigation of selective plugging mechanism in immiscible two-phase flow using phase-field method vol.74, pp.None, 2009, https://doi.org/10.2516/ogst/2019050
- The biopolymer produced by Rhizobium viscosum CECT 908 is a promising agent for application in microbial enhanced oil recovery vol.49, pp.None, 2009, https://doi.org/10.1016/j.nbt.2018.11.002
- Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels vol.46, pp.6, 2009, https://doi.org/10.1007/s10295-019-02161-x
- Systematic Modeling Approach to Selective Plugging UsingIn SituBacterial Biopolymer Production and Its Potential for Microbial-enhanced Oil Recovery vol.36, pp.5, 2009, https://doi.org/10.1080/01490451.2019.1573277
- Evaluation of Microencapsulation Techniques for MICP Bacterial Spores Applied in Self-Healing Concrete vol.9, pp.1, 2009, https://doi.org/10.1038/s41598-019-49002-6
- Oil reservoir simulating bioreactors: tools for understanding petroleum microbiology vol.104, pp.3, 2009, https://doi.org/10.1007/s00253-019-10311-5
- Potential applications of microbial enhanced oil recovery to heavy oil vol.40, pp.4, 2020, https://doi.org/10.1080/07388551.2020.1739618
- Application of Polysaccharide Biopolymer in Petroleum Recovery vol.12, pp.9, 2009, https://doi.org/10.3390/polym12091860
- Mathematical Modeling, Laboratory Experiments, and Sensitivity Analysis of Bioplug Technology at Darcy Scale vol.25, pp.6, 2020, https://doi.org/10.2118/201247-pa
- Extracellular Polymeric Substances Production by ZL-02 For Microbial Enhanced Oil Recovery vol.60, pp.2, 2009, https://doi.org/10.1021/acs.iecr.0c05130