DOI QR코드

DOI QR Code

Use of FT-IR to Identify Enhanced Biomass Production and Biochemical Pool Shifts in the Marine Microalgae, Chlorella ovalis, Cultured in Media Composed of Different Ratios of Deep Seawater and Fermented Animal Wastewater

  • Kim, Mi-Kyung (Korea Plankton Culture Collection for Industrialization (KPCCI), Marine Science Research Center, Environmental Research Institute, Yeungnam University) ;
  • Jeune, Kyung-Hee (Department of Biology, Yeungnam University)
  • Published : 2009.10.31

Abstract

Growth rates, photosystem II photosynthesis, and the levels of chlorophyll $\alpha$ and secondary metabolites of Chlorella ovalis were estimated to determine if they were enhanced by the addition of swine urine (BM) or cow compost water (EP) that had been fermented by soil bacteria to deep seawater (DSW) in an attempt to develop media that enabled batch mass culture at lower costs. Growth of C. ovalis in f/2, f/2-EDTA+BM60%, DSW+BM30%, and DSW+EP60% was enhanced and maintained in the log phase of growth for 16 days. The cell densities of C. ovalis in DSW+EP60% ($4.1{\times}10^6$ Cells/ml) were higher than those of f/2 ($2.9{\times}10^6$ Cells/ml), f/2-E+BM60% ($3.7{\times}10^6$ Cells/ml), and DSW+BM30% ($2.7{\times}10^6$ Cells/ml). The growth rate was also more favorable for C. ovalis cultured in DSW+EP60% ($0.15\;day^{-1}$) than that of C. ovalis cultured in the control medium (f/2) ($0.12\;day^{-1}$). Furthermore, the chlorophyll a concentration of C. ovalis cultured in DSW+EP60% (4.56 mg/l) was more than 2-fold greater than that of C. ovalis cultured in f/2 (2.35 mg/l). Moreover, the maximal quantum yields of photo system II at 470 nm (Fv/Fm) were significantly higher in organisms cultured at f/2-E+BM60% (0.53) and DSW+EP60% (0.52) than in the other treatment groups. Finally, Fourier transformation infrared (FT-IR) spectroscopy revealed that C. ovalis grown in DSW+EP60% had more typical peaks and various biochemical pool shifts than those grown in other types of media. Taken together, the results of this study indicate that the use of DSW+EP60% to culture C. ovalis can reduce maintenance expenses and promote higher yields.

Keywords

References

  1. Allard, B. and J. Templier. 2001. High molecular weight lipids from the trilaminar outer wall (TLS)-containing microalgae Chlorella emersonii, Scenedesmus communis and Tetraedron minimum. Phytochemistry 57: 459-467 https://doi.org/10.1016/S0031-9422(01)00071-1
  2. APPA, AWWA. WEF. 1995. Standard Methods for the Examination of Water and Wastewater. A. D. Eaton, L. S. Clesceri, and A. E. Greenberg (eds.). Baltimore
  3. Bich, N. N., M. I. Yaziz, and N. A. K. Bakti. 1999. Combination of Chlorella vulgaris and Eichhornia crassipes for wastewater nitrogen removal. Wat. Res. 33: 2357-2362 https://doi.org/10.1016/S0043-1354(98)00439-4
  4. Craggs, R. J., P. J. Mcaulley, and V. J. Smith. 1997. Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Wat. Res. 31: 1701-1707 https://doi.org/10.1016/S0043-1354(96)00093-0
  5. DeBlase, F. J. and S. Compton. 1991. Infrared emission spectroscopy:A theoretical and experimental review. Appl. Spectrosc. 45:611-618 https://doi.org/10.1366/0003702914337029
  6. Dorigo, U. and C. Leboulanger. 2001. A pulse-amplitude modulated fluorescence-based method for assessing the effects of photosystem herbicides on freshwater periphyton. J. Appl. Phycol. 13: 509-515 https://doi.org/10.1023/A:1012598816581
  7. Fischer, G., S. Braun, R. Thissen, and W. Dott. 2006. FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J. Microbiol. Methods 64: 63-77 https://doi.org/10.1016/j.mimet.2005.04.005
  8. Fidalgo, J. P., A. Cid, E. Torres, A. Sukenik, and C. Herrero. 1998. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105-116 https://doi.org/10.1016/S0044-8486(98)00278-6
  9. Gilberst, E. and S. Hoffmann-Glewe. 1991. Ozonation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution:Influence of pH value and metal ions. Water Res. 24: 39-44 https://doi.org/10.1016/0043-1354(90)90062-B
  10. Guillard, R. R. L. 1973. Division rates, pp. 289-311. In J. R. Stein (ed.), Handbook of Phycological Methods - Culture Methods and Growth Measurements. Cambridge University Press, Cambridge
  11. Janssen, M., T. C. Kuijpers, B. Veldhoen, M. B. Ternbach, J. Tramper, L. R. Mur, and Ren$\acute{e}$ H. Wijffels. 1999. Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13-87s. J. Biotechnol. 70: 323-333 https://doi.org/10.1016/S0168-1656(99)00084-X
  12. Jeon, S. M., K. H. Jeune, and M. K. Kim. 2006. Enhanced production of Chlorella ovalis and Dunaliella parva by the rates of medium composition obtained from the fermented animal wastewater including a natural substitute chelator for EDTA. Algae 21: 333-341 https://doi.org/10.4490/ALGAE.2006.21.3.333
  13. Juneau, P., A. El Berdey, and R. Popovic. 2002. PAM fluorometry in the determination of the sensitivity of Chlorella vulgaris, Selenastrum capricornutum, and Chlamydomonas reinhardtii to copper. Arch. Environ. Contam. Toxicol. 42: 155-164 https://doi.org/10.1007/s00244-001-0027-0
  14. Kansiz, M., P. Heraud, B. Wood, F. Burden, J. Beardall, and D. McNaughton. 1999. Fourier transform infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains. Phytochemistry 52: 407-417 https://doi.org/10.1016/S0031-9422(99)00212-5
  15. Kawamoto, S. 1996. Experiment Results of BMW Techniques in the Farm of Kamegawa. Ecopeace Press, Daegu
  16. Kim, H. J. 2002. Development and application of deep seawater. Bull. Soc. Naval Architects Korea. 39:123-128
  17. Kim, M. K. and M. U. Chang. 2006. Enhanced production of Phaeodactylum tricornutum (marine diatoms) cultured on a new medium with swine wastewater fermented by soil bacteria. J. Microbiol. Biotechnol. 16: 1947-1953
  18. Kim, M. K., J. W. Park, C. S. Park, S. M. Jeune, S. J. Kim, K. H. Jeune, M. U. Jang, and J. Acreman. 2006. Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour. Technol. 98: 2220-2228 https://doi.org/10.1016/j.biortech.2006.08.031
  19. Kim, M. K. and R. E. H. Smith. 2001. Effect of ionic copper toxicity on the growth of green alga, Selenastrum capricornutum. J. Microbiol. Biotechnol. 11: 211-216
  20. Kim, M. K. and J. C. Thomas. 1991. Studies of growth according to the concentration of mineral elements of medium in Cyanophyte SG 63. Korean J. Bot. 35: 1-8
  21. Kim, Y. J., I. S. Jung, and Y. J. Choi. 2006. Effects of deep ground water on antioxidant and microbial growth. J. Nat. Sci. 15:19-23
  22. Kim, M. L., J. S. Jung, and K. D. Lee. 2003. Change in growth of alcohol fermentation yeast with addition of deep seawater. J. Kor. Soc. Post-Harvest Sci. Technol. Agric. Prod. 10: 417-420
  23. Lababpour, A., S. E. Hong, and C. G. Lee. 2007. Haematococcus pluvialis cell-mass using ultraviolet fluorescence spectroscopy. J. Microbiol. Biotechnol. 17: 1922-1929
  24. Lee, J. Y., T. S. Kwon, K. T. Baek, and J. W. Yang. 2005. Biological fixation of $CO_2$ by Chlorella sp. HA-1 in a semicontinuous and series reactor system. J. Microbiol. Biotechnol. 15: 461-465
  25. Lim, J. Y., M. K. Jo, and B. H. Han. 1998. Optimal culture conditions for marine Chlorella in a vertical tubular photobioreactor system. J. Fish. Sci. Technol. 31: 139-142
  26. Marcilla, A., A. G. Siurana, C. Gomis, E. Chapuli, M. C. Catala, and F. J. Valdes. 2009. Characterization of microalgal species through TGA/FTIR analysis: Application to nannochloropsis sp. Thermochimica Acta (On-line ). 484: 41-47 https://doi.org/10.1016/j.tca.2008.12.005
  27. McLachlan, J. 1973. Growth media - marine, pp. 25-51. In J. R. Stein (ed.). Handbook of Phycological Methods - Culture Methods and Growth Measurements. Cambridge University Press, Cambridge
  28. Mecozzi, M., M. Pictroletti, and R. D. Mento. 2007. Application of FTIR spectroscopy in ecotoxicological studies supported by multivariate analysis and 2D correlation spectroscopy. Vibrat. Spectrosc. 44: 228-235 https://doi.org/10.1016/j.vibspec.2006.11.006
  29. Mulbry, W., S. Kondrad, and J. Buyer. 2008. Treatment of dairy and swine manure effluents using freshwater algae: Fatty acid content and composition of algal biomass at different manure loading rates. J. Appl. Phycol. 20: 1079-1085 https://doi.org/10.1007/s10811-008-9314-8
  30. Nichols, H. W. 1973. Growth media - freshwater, pp. 7-24. In J. R. Stein (ed.). Handbook of Phycological Methods - Culture Methods and Growth Measurements. Cambridge University Press, Cambridge
  31. Palmucci, M. and M. Giordano. 2007. Utilization of FTIR spectrometry for the study of biodiesel-originated oleogenesis in microalgae. Proceedings of 4th European Phycological Congress, Ovideo, Spain. p. 78
  32. Pouchert, C. J. 1978. The Aldrich Library of FT-IR Spectra Edition, 1575 pp. Aldrich Chemical Company, Inc. Milwaukee
  33. Shon, Y. H., K. S. Nam, and M. K. Kim. 2004. Cancer chemopreventive potential of Scenedesmus cultured in medium based on swine wastewater. J. Microbiol. Biotechnol. 14: 158-161
  34. Stehfest, K., J$\ddot{o}$rg. Toepel, and C. Wilhelm. 2005. The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol. Biochem. 43: 717-726 https://doi.org/10.1016/j.plaphy.2005.07.001
  35. Sung, K. D., J. S. Lee, C. S. Shin, and S. C. Park. 1998. Enhanced cell growth of Chlorella sp. KR-1 by the addition of iron and EDTA. J. Microbiol. Biotechnol. 8: 409-411
  36. Voltolina, D., B. Cordero, M. Nieves, and L. P. Soto. 1998. Growth of Scenedesmus sp. in artificial wastewater. Bioresour. Technol. 68: 265-268 https://doi.org/10.1016/S0960-8524(98)00150-3
  37. Walz, H. G. 1999. Phytoplankton Analyzer Phyto-PAM: System Components and Principles of Operation. Walz, Effeltrich

Cited by

  1. Microalgae triacylglycerols content by FT-IR spectroscopy vol.25, pp.6, 2009, https://doi.org/10.1007/s10811-013-0007-6
  2. Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis vol.24, pp.4, 2009, https://doi.org/10.4014/jmb.1306.06014
  3. Evaluation of Multitudinous Potentials of Photosynthetic Microalga, Neochloris aquatica RDS02 Derived Silver Nanoparticles vol.7, pp.2, 2009, https://doi.org/10.1080/23080477.2018.1491743
  4. Sugarcane Bagasse Hydrolysate as Organic Carbon Substrate for Mixotrophic Cultivation of Nannochloropsis sp. BR2 vol.12, pp.5, 2009, https://doi.org/10.1007/s12649-020-01185-0