Browse > Article
http://dx.doi.org/10.4014/jmb.0901.041

Use of FT-IR to Identify Enhanced Biomass Production and Biochemical Pool Shifts in the Marine Microalgae, Chlorella ovalis, Cultured in Media Composed of Different Ratios of Deep Seawater and Fermented Animal Wastewater  

Kim, Mi-Kyung (Korea Plankton Culture Collection for Industrialization (KPCCI), Marine Science Research Center, Environmental Research Institute, Yeungnam University)
Jeune, Kyung-Hee (Department of Biology, Yeungnam University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.10, 2009 , pp. 1206-1212 More about this Journal
Abstract
Growth rates, photosystem II photosynthesis, and the levels of chlorophyll $\alpha$ and secondary metabolites of Chlorella ovalis were estimated to determine if they were enhanced by the addition of swine urine (BM) or cow compost water (EP) that had been fermented by soil bacteria to deep seawater (DSW) in an attempt to develop media that enabled batch mass culture at lower costs. Growth of C. ovalis in f/2, f/2-EDTA+BM60%, DSW+BM30%, and DSW+EP60% was enhanced and maintained in the log phase of growth for 16 days. The cell densities of C. ovalis in DSW+EP60% ($4.1{\times}10^6$ Cells/ml) were higher than those of f/2 ($2.9{\times}10^6$ Cells/ml), f/2-E+BM60% ($3.7{\times}10^6$ Cells/ml), and DSW+BM30% ($2.7{\times}10^6$ Cells/ml). The growth rate was also more favorable for C. ovalis cultured in DSW+EP60% ($0.15\;day^{-1}$) than that of C. ovalis cultured in the control medium (f/2) ($0.12\;day^{-1}$). Furthermore, the chlorophyll a concentration of C. ovalis cultured in DSW+EP60% (4.56 mg/l) was more than 2-fold greater than that of C. ovalis cultured in f/2 (2.35 mg/l). Moreover, the maximal quantum yields of photo system II at 470 nm (Fv/Fm) were significantly higher in organisms cultured at f/2-E+BM60% (0.53) and DSW+EP60% (0.52) than in the other treatment groups. Finally, Fourier transformation infrared (FT-IR) spectroscopy revealed that C. ovalis grown in DSW+EP60% had more typical peaks and various biochemical pool shifts than those grown in other types of media. Taken together, the results of this study indicate that the use of DSW+EP60% to culture C. ovalis can reduce maintenance expenses and promote higher yields.
Keywords
Biomass; FT-IR spectrometer; Chlorella ovalis; deep seawater; fermented animal wastewater;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 APPA, AWWA. WEF. 1995. Standard Methods for the Examination of Water and Wastewater. A. D. Eaton, L. S. Clesceri, and A. E. Greenberg (eds.). Baltimore
2 Fidalgo, J. P., A. Cid, E. Torres, A. Sukenik, and C. Herrero. 1998. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105-116   DOI   ScienceOn
3 Jeon, S. M., K. H. Jeune, and M. K. Kim. 2006. Enhanced production of Chlorella ovalis and Dunaliella parva by the rates of medium composition obtained from the fermented animal wastewater including a natural substitute chelator for EDTA. Algae 21: 333-341   DOI   ScienceOn
4 Kansiz, M., P. Heraud, B. Wood, F. Burden, J. Beardall, and D. McNaughton. 1999. Fourier transform infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains. Phytochemistry 52: 407-417   DOI   ScienceOn
5 Kim, H. J. 2002. Development and application of deep seawater. Bull. Soc. Naval Architects Korea. 39:123-128
6 Kim, Y. J., I. S. Jung, and Y. J. Choi. 2006. Effects of deep ground water on antioxidant and microbial growth. J. Nat. Sci. 15:19-23
7 Mecozzi, M., M. Pictroletti, and R. D. Mento. 2007. Application of FTIR spectroscopy in ecotoxicological studies supported by multivariate analysis and 2D correlation spectroscopy. Vibrat. Spectrosc. 44: 228-235   DOI   ScienceOn
8 Pouchert, C. J. 1978. The Aldrich Library of FT-IR Spectra Edition, 1575 pp. Aldrich Chemical Company, Inc. Milwaukee
9 Shon, Y. H., K. S. Nam, and M. K. Kim. 2004. Cancer chemopreventive potential of Scenedesmus cultured in medium based on swine wastewater. J. Microbiol. Biotechnol. 14: 158-161   ScienceOn
10 Voltolina, D., B. Cordero, M. Nieves, and L. P. Soto. 1998. Growth of Scenedesmus sp. in artificial wastewater. Bioresour. Technol. 68: 265-268   DOI   ScienceOn
11 Stehfest, K., J$\ddot{o}$rg. Toepel, and C. Wilhelm. 2005. The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol. Biochem. 43: 717-726   DOI   ScienceOn
12 Palmucci, M. and M. Giordano. 2007. Utilization of FTIR spectrometry for the study of biodiesel-originated oleogenesis in microalgae. Proceedings of 4th European Phycological Congress, Ovideo, Spain. p. 78
13 Marcilla, A., A. G. Siurana, C. Gomis, E. Chapuli, M. C. Catala, and F. J. Valdes. 2009. Characterization of microalgal species through TGA/FTIR analysis: Application to nannochloropsis sp. Thermochimica Acta (On-line ). 484: 41-47   DOI
14 Sung, K. D., J. S. Lee, C. S. Shin, and S. C. Park. 1998. Enhanced cell growth of Chlorella sp. KR-1 by the addition of iron and EDTA. J. Microbiol. Biotechnol. 8: 409-411   ScienceOn
15 Kim, M. L., J. S. Jung, and K. D. Lee. 2003. Change in growth of alcohol fermentation yeast with addition of deep seawater. J. Kor. Soc. Post-Harvest Sci. Technol. Agric. Prod. 10: 417-420
16 Lim, J. Y., M. K. Jo, and B. H. Han. 1998. Optimal culture conditions for marine Chlorella in a vertical tubular photobioreactor system. J. Fish. Sci. Technol. 31: 139-142   과학기술학회마을   ScienceOn
17 DeBlase, F. J. and S. Compton. 1991. Infrared emission spectroscopy:A theoretical and experimental review. Appl. Spectrosc. 45:611-618   DOI
18 Janssen, M., T. C. Kuijpers, B. Veldhoen, M. B. Ternbach, J. Tramper, L. R. Mur, and Ren$\acute{e}$ H. Wijffels. 1999. Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13-87s. J. Biotechnol. 70: 323-333   DOI   ScienceOn
19 Kawamoto, S. 1996. Experiment Results of BMW Techniques in the Farm of Kamegawa. Ecopeace Press, Daegu
20 Kim, M. K. and R. E. H. Smith. 2001. Effect of ionic copper toxicity on the growth of green alga, Selenastrum capricornutum. J. Microbiol. Biotechnol. 11: 211-216   ScienceOn
21 Walz, H. G. 1999. Phytoplankton Analyzer Phyto-PAM: System Components and Principles of Operation. Walz, Effeltrich
22 Mulbry, W., S. Kondrad, and J. Buyer. 2008. Treatment of dairy and swine manure effluents using freshwater algae: Fatty acid content and composition of algal biomass at different manure loading rates. J. Appl. Phycol. 20: 1079-1085   DOI   ScienceOn
23 Gilberst, E. and S. Hoffmann-Glewe. 1991. Ozonation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution:Influence of pH value and metal ions. Water Res. 24: 39-44   DOI   ScienceOn
24 Guillard, R. R. L. 1973. Division rates, pp. 289-311. In J. R. Stein (ed.), Handbook of Phycological Methods - Culture Methods and Growth Measurements. Cambridge University Press, Cambridge
25 Kim, M. K. and M. U. Chang. 2006. Enhanced production of Phaeodactylum tricornutum (marine diatoms) cultured on a new medium with swine wastewater fermented by soil bacteria. J. Microbiol. Biotechnol. 16: 1947-1953
26 Fischer, G., S. Braun, R. Thissen, and W. Dott. 2006. FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J. Microbiol. Methods 64: 63-77   DOI   ScienceOn
27 Bich, N. N., M. I. Yaziz, and N. A. K. Bakti. 1999. Combination of Chlorella vulgaris and Eichhornia crassipes for wastewater nitrogen removal. Wat. Res. 33: 2357-2362   DOI   ScienceOn
28 Juneau, P., A. El Berdey, and R. Popovic. 2002. PAM fluorometry in the determination of the sensitivity of Chlorella vulgaris, Selenastrum capricornutum, and Chlamydomonas reinhardtii to copper. Arch. Environ. Contam. Toxicol. 42: 155-164   DOI   ScienceOn
29 Allard, B. and J. Templier. 2001. High molecular weight lipids from the trilaminar outer wall (TLS)-containing microalgae Chlorella emersonii, Scenedesmus communis and Tetraedron minimum. Phytochemistry 57: 459-467   DOI   ScienceOn
30 Lababpour, A., S. E. Hong, and C. G. Lee. 2007. Haematococcus pluvialis cell-mass using ultraviolet fluorescence spectroscopy. J. Microbiol. Biotechnol. 17: 1922-1929   PUBMED   ScienceOn
31 Kim, M. K. and J. C. Thomas. 1991. Studies of growth according to the concentration of mineral elements of medium in Cyanophyte SG 63. Korean J. Bot. 35: 1-8
32 McLachlan, J. 1973. Growth media - marine, pp. 25-51. In J. R. Stein (ed.). Handbook of Phycological Methods - Culture Methods and Growth Measurements. Cambridge University Press, Cambridge
33 Craggs, R. J., P. J. Mcaulley, and V. J. Smith. 1997. Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Wat. Res. 31: 1701-1707   DOI   ScienceOn
34 Dorigo, U. and C. Leboulanger. 2001. A pulse-amplitude modulated fluorescence-based method for assessing the effects of photosystem herbicides on freshwater periphyton. J. Appl. Phycol. 13: 509-515   DOI   ScienceOn
35 Lee, J. Y., T. S. Kwon, K. T. Baek, and J. W. Yang. 2005. Biological fixation of $CO_2$ by Chlorella sp. HA-1 in a semicontinuous and series reactor system. J. Microbiol. Biotechnol. 15: 461-465   ScienceOn
36 Nichols, H. W. 1973. Growth media - freshwater, pp. 7-24. In J. R. Stein (ed.). Handbook of Phycological Methods - Culture Methods and Growth Measurements. Cambridge University Press, Cambridge
37 Kim, M. K., J. W. Park, C. S. Park, S. M. Jeune, S. J. Kim, K. H. Jeune, M. U. Jang, and J. Acreman. 2006. Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour. Technol. 98: 2220-2228   DOI   ScienceOn