Browse > Article
http://dx.doi.org/10.4014/jmb.0902.097

Acetate Consumption Activity Directly Determines the Level of Acetate Accumulation During Escherichia coli W3110 Growth  

Shin, Soo-An (CJ Cheiljedang R&D Center for Bioproducts)
Chang, Dong-Eun (Metabolix)
Pan, Jae-Gu (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.10, 2009 , pp. 1127-1134 More about this Journal
Abstract
Escherichia coli excretes acetate during aerobic growth on glycolytic carbon sources, which has been explained as an overflow metabolism when the carbon flux into the cell exceeds the capacity of central metabolic pathways. Nonacetogenic growth of E. coli on gluconeogenic carbon sources like succinate or in carbon-limited slow growth conditions is believed an evidence for the explanation. However, we found that a strain defected in the acs (acetyl Co-A synthetase) gene, the product of which is involved in scavenging acetate, accumulated acetate even in succinate medium and in carbon-limited low growth rate condition, where as its isogenic parental strain did not. The acs promoter was inducible in noncatabolite repression condition, whereas the expression of the ackA-pta operon encoding acetate kinase and phosphotransacetylase for acetate synthesis was constitutive. Results in this study suggest that E. coli excretes and scavenges acetate simultaneously in the carbon-limited low growth condition and in nonacetogenic carbon source, and the activity of the acetate consumption pathway directly affects the accumulation level of acetate in the culture broth.
Keywords
Acetate metabolism; acetyl CoA synthetase; phosphotransacetylase; acetate kinase; glyoxylate shunt;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Andersen, K. B. and K. von Meyenburg. 1980. Are growth rates of Escherichia coli in batch cultures limited by respiration? J. Bacteriol. 144: 114-123
2 Balbás, P., M. Alexeyev, I. Shokolenko, F. Bolivar, and F. Valle. 1996. A pBRINT family of plasmids for integration of cloned DNA into the Escherichia coli chromosome. Gene 172: 65-69   DOI   ScienceOn
3 Brown, T. D., M. C. Jones-Mortimer, and H. L. Kornberg. 1977. The enzymic interconversion of acetate and acetylcoenzyme A in Escherichia coli. J. Gen. Microbiol. 102: 327-336   DOI   PUBMED   ScienceOn
4 Eiteman, M. A. and E. Altman. 2006. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24: 530-536   DOI   ScienceOn
5 Fox, D. K., N. D. Meadow, and S. Roseman. 1986. Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. J. Biol. Chem. 261: 13498-13503   PUBMED
6 Kayser, A., J. Weber, V. Hecht, and U. Rinas. 2005. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151: 693-706   DOI   ScienceOn
7 Kumari, S., E. J. Simel, and A. J. Wolfe. 2000. $\sigma^{70}$ is the principal sigma factor responsible for transcription of acs, which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182: 551-554   DOI   ScienceOn
8 Lin, H., N. M. Castro, G. N. Bennett, and K. Y. San. 2006. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: A potential tool in metabolic engineering. Appl. Microbiol. Biotechnol. 71: 870-874   DOI   ScienceOn
9 Nystr$\ddot{o}$m, T. 1994. The glucose-starvation stimulon of Escherichia coli: Induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol. Microbiol. 12: 833-843   DOI   ScienceOn
10 Pruss, B. M. and A. J. Wolfe. 1994. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol. Microbiol. 12: 973-984
11 Wolfe, A. J. 2005. The acetate switch. Microbiol. Mol. Biol. Rev. 69: 12-50   DOI   ScienceOn
12 Kessler, D. and J. Knappe. 1996. Anaerobic dissimilation of pyruvate, pp. 199-205. In F. C. Neidhardt, R. Curtiss. III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, et al. (eds.). Escherichia coli and Salmonella: Celluar and Molecular Biology, Vol. 1. American Society for Microbioligy, Washington, DC
13 Maloy, S. R. and W. D. Nunn. 1981. Role of gene fadR in Escherichia coli acetate metabolism. J. Bacteriol. 148: 83-90
14 Miyake, M., C. Miyamoto, J. Schnackenberg, R. Kurane, and Y. Asada. 2000. Phosphotransacetylase as a key factor in biological production of polyhydroxybutyrate. Appl. Biochem. Biotechnol. 84-86: 1039-1044   DOI   ScienceOn
15 Sunnarborg, A., D. Klumpp, T. Chung, and D. C. LaPorte. 1990. Regulation of the glyoxylate bypass operon: Cloning and characterization of iclR. J. Bacteriol. 172: 2642-2649
16 Zhang, X. and H. Bremer. 1995. Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J. Biol. Chem. 270:11181-11189   DOI   ScienceOn
17 Farmer, W. R. and J. C. Liao. 1997. Reduction of aerobic acetate production by Escherichia coli. Appl. Environ. Microbiol. 63: 3205-3210   PUBMED   ScienceOn
18 Yamamoto, K. and A. Ishihama. 2003. Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol. Microbiol. 47: 183-194   DOI   ScienceOn
19 Holms, H. 1996. Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol. Rev. 19: 85-116   DOI   PUBMED   ScienceOn
20 Spellerberg, B., D. R. Cundell, J. Sandros, B. J. Pearce, I. Id$\ddot{a}$np$\ddot{a}$$\ddot{a}$n-Heikkila, C. Rosenow, and H. R. Masure. 1996. Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol. Microbiol. 19: 803-813   DOI   ScienceOn
21 Holms, W. H. 1986. The central metabolic pathways of Escherichia coli: Relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr. Top. Cell Regul. 28: 69-105   PUBMED   ScienceOn
22 Chang, Y. Y., A. Y. Wang, and J. E. Cronan Jr. 1994. Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene. Mol. Microbiol. 11: 1019-1028   DOI   ScienceOn
23 Kakuda, H., K. Hosono, K. Shiroishi, and S. Ichihara. 1994. Identification and characterization of the ackA (acetate kinase A)-pta (phosphotransacetylase) operon and complementation analysis of acetate utilization by an ackA-pta deletion mutant of Escherichia coli. J. Biochem. (Tokyo) 116: 916-922
24 McCleary, W. R., J. B. Stock, and A. J. Ninfa. 1993. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175:2793-2798
25 Simons, R. W., F. Houman, and N. Kleckner. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53: 85-96   DOI   ScienceOn
26 Maloy, S. R., M. Bohlander, and W. D. Nunn. 1980. Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation. J. Bacteriol. 143: 720-725
27 Notley, L. and T. Ferenci. 1996. Induction of RpoS-dependent functions in glucose-limited continuous culture: What level of nutrient limitation induces the stationary phase of Escherichia coli? J. Bacteriol. 178: 1465-1468
28 Pr$\ddot{u}$ß, B. M. 1998. Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli. Arch. Microbiol. 170: 141-146   DOI   ScienceOn
29 Rosenzweig, R. F., R. R. Sharp, D. S. Treves, and J. Adams. 1994. Microbial evolution in a simple unstructured environment:Genetic differentiation in Escherichia coli. Genetics 137: 903-917   PUBMED   ScienceOn
30 Maloy, S. R. and W. D. Nunn. 1982. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J. Bacteriol. 149:173-180
31 Shin, S., S. G. Song, D. S. Lee, J. G. Pan, and C. Park. 1997. Involvement of iclR and rpoS in the induction of acs, the gene for acetyl coenzyme A synthetase of Escherichia coli K-12. FEMS Microbiol. Lett. 146: 103-108   DOI   ScienceOn
32 Diaz-Ricci, J. C., B. Hitzmann, U. Rinas, and J. E. Bailey. 1990. Comparative studies of glucose catabolism by Escherichia coli grown in a complex medium under aerobic and anaerobic conditions. Biotechnol. Prog. 6: 326-332   DOI
33 Kumari, S., C. M. Beatty, D. F. Browning, S. J. Busby, E. J. Simel, G. Hovel-Miner, and A. J. Wolfe. 2000. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182: 4173-4179   DOI   ScienceOn
34 Kumari, S., R. Tishel, M. Eisenbach, and A. J. Wolfe. 1995. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 177: 2878-2886
35 Park, C. and G. L. Hazelbauer. 1986. Mutations specifically affecting ligand interaction of the Trg chemosensory transducer. J. Bacteriol. 167: 101-109
36 Shin, S. and C. Park. 1995. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 177: 4696-4702   PUBMED   ScienceOn
37 Kohara, Y., K. Akiyama, and K. Isono. 1987. The physical map of the whole E. coli chromosome: Application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50: 495-508   DOI   ScienceOn