고도에 따른 발사체의 레이놀즈수 영향성 연구

The Reynolds Number Effects on the Projectile with an Altitude Change

  • 양영록 (경상대학교) ;
  • 허상범 (경상대학교) ;
  • 이영민 (한국항공우주산업주식회사) ;
  • 조태환 (경상대학교 & 항공기부품기술연구소) ;
  • 명노신 (경상대학교 & 항공기부품기술연구소) ;
  • 박찬우 (경상대학교 & 항공기부품기술연구소)
  • 발행 : 2009.10.05

초록

A research was conducted about the Reynolds number effect on the projectile with an altitude change. The atmosphere conditions change in accordance with an altitude change. It effects the Reynolds number. To confirm how the phenomena affect the trajectory of the projectile, a computer program is designed with an altitude and a range considered. The MISSILE DATCOM which is based on the semi-empirical method was utilized to get aerodynamic coefficients. The result shows that the Reynolds number considerably changes as the altitude change. It causes to change the drag coefficient of the projectile. As the Reynolds number decreases, the skin friction drag increases significantly. It causes to decrease the maximum altitude and the range.

키워드

참고문헌

  1. 성승학, '풍공학 모형실험에서 레이놀즈수의 영향', 한국풍공학회지, 제9권, 제2호, pp. 134-143, 2005
  2. Metzgera, M. M. and Klewicki, J. C., 'A Comparative Study of Near-Wall Turbulence in High and Low Reynolds Number Boundary Layers', Physics of Fluids, Vol. 13, No. 3, pp. 692-701, 2001 https://doi.org/10.1063/1.1344894
  3. Roshko, A., 'Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number', Journal of Fluid Mechanics, pp. 345-356, 2006
  4. Ching, C. Y., Djenidi, L. and Antonia, R. A., 'Low-Reynolds-Number Effects in a Turbulent Boundary Layer', Experiments in Fluids, Vol. 19, No. 1, pp. 61-68, 1995
  5. Antonia, R. A. and Kim, J., 'Low-Reynolds-number Effects on Near-Wall Turbulence', Journal of Fluid Mechanics, Vol. 276, pp. 61-68, 1994 https://doi.org/10.1017/S0022112094002466
  6. 권용수, 최봉석, '탄도미사일의 비행궤적 특성 해석', 한국국방경영분석학회지, 제32권, 제1호, pp. 176-187, 2006
  7. Blake, W. B., Missile DATCOM User's Manual - 1997 Fortran 90 Revision, USAF, 1998
  8. Vukelich, S. R., Stoy, S. L., Burns, K. A., Castillo, J. A., and Moore, M. E., Missile DATCOM Volume I-Final Report, AFWAL-TR-86-3091, 1988
  9. 한명신, 명노신, 조태환, 황종선, 박찬혁, 'Semi-Empirical 기법을 이용한 미사일 형상의 공력특성해석', 한국항공우주학회지, 제33권, 제3호, pp. 26-31, 2005 https://doi.org/10.5139/JKSAS.2005.33.3.026
  10. Kuethe, A. M., Chow, C. Y., Foundation of Aerodynamics, John Wiley & Sons, Inc., pp. 531-533
  11. Frank, G. M., Approximate Methods for Weapon Aerodynamics, AIAA, pp. 35-41, 2000
  12. Eugene L. F., Tactical Missile Design, AIAA Education Series, 2001
  13. Auman, L. M. and Kreeger, R. E., 'Aerodynamic Characteristics of a Canard-Controlled Missile with a Free-Spinning Tail', Aerospace Sciences Meeting and Exhibit, pp. 1-10, 1998
  14. Hoerner, S. F., Fluid-Dynamic Drag, Hoerner Fluid Dynamics, 1965
  15. Hoerner, S. F., Fluid-Dynamic Lift, Hoerner Fluid Dynamics, 1985
  16. Frank, M. W., Viscous Fluid Flow, McGraw-Hill, Inc., 1991
  17. Katz, J. and Plotkin, A., Low-Speed Aerodynamics, Cambridge, 2001