• Title/Summary/Keyword: sulfur cycle

Search Result 97, Processing Time 0.03 seconds

The Exchange of Reduced Sulfur Gases Across the Atmosphere-Teerrestrial Biosphere Interface

  • Kim, Ki-Hyun;Zhen Yand;Shiming Wang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.E
    • /
    • pp.1-18
    • /
    • 1996
  • In this review, the significance of terrestrial ecosystems in the global sulfur budget has been reviewed based on the currently available databases covering the topic. In the section 1, we describe our current understanding of natural sulfur cycle in relation to most well-known natural reservoir, oceanic environment. The sections 2 and 3 provide the fundamental pictures of the rerrestrial sulfur cycle with respect to the relative importance of its individe the fundamental pictures of the terrestrial sulfur cycle with respect to the section 3, previously reported flux values for several major sulfur gases are presented for each reservoir and are intercompared to derive representative fluxes for the respective environment. In the section 4, source mechanisms for volatile sulfur species are dealt for both microscale and macroscale processes leading to their productions. In the section 5, environmental factors controlling the exchange of biogenic sulfur gases across the air-surface have been discussed. In the section 6, environmental fate of sulfur gases released into the atmosphere has been described. Finally in tie section 7, as concluding remarksm we discuss directions and suggestions to overcome various limitations encountered from previous measurement investigations of natural sulfur cycle in diverse natural ecological systems.

  • PDF

Current Status of Nuclear Hydrogen Development (원자력을 이용한 수소생산기술 개발 동향)

  • Chang Jong-Hwa
    • Journal of Energy Engineering
    • /
    • v.15 no.2 s.46
    • /
    • pp.127-137
    • /
    • 2006
  • To resolve the environmental and economics problems of fossil fuel energy, a hydrogen economy is promoted in many developed countries. Massive production of hydrogen using a nuclear power is a practical way to feed fuel required for the hydrogen economy. The author introduces a very high temperature reactor and its development status. He also reviews recent achievements and directions of research in hydrogen production process, such as sulfur-iodine thermochemical cycle, sulfur hybrid cycle, and high temperature electrolysis.

Energy optimization of a Sulfur-Iodine thermochemical nuclear hydrogen production cycle

  • Juarez-Martinez, L.C.;Espinosa-Paredes, G.;Vazquez-Rodriguez, A.;Romero-Paredes, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2066-2073
    • /
    • 2021
  • The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless, there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence, in this paper, a thermal energy optimization of a Sulfur-Iodine nuclear hydrogen production cycle was performed by means a heuristic method with the aim of minimizing the energy targets of the heat exchanger network at different minimum temperature differences. With this method, four different heat exchanger networks are proposed. A reduction of the energy requirements for cooling ranges between 58.9-59.8% and 52.6-53.3% heating, compared to the reference design with no heat exchanger network. With this reduction, the thermal efficiency of the cycle increased in about 10% in average compared to the reference efficiency. This improves the use of thermal energy of the cycle.

Development of Room Temperature Na/S Secondary Batteries (상온형 나트륨/유황 이차전지 개발 동향)

  • RYU, HOSUK;KIM, INSOO;PARK, JINSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

$SO_3$ decomposition over Cu/Fe/$Al_2O_3$ granules with controlled size for hydrogen production in SI thermochemical cycle (황-요오도 열화학 수소제조 공정에서 다양한 크기의 Cu/Fe/$Al_2O_3$ 구형 촉매를 이용한 삼산화항 분해)

  • Yoo, Kye-Sang;Jung, Kwang-Deog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • Cu/Fe/$Al_2O_3$ granules with various sizes have been prepared by a combination of sol-gel and oil drop method for the use in sulfur trioxide decomposition, a subcycle in thermochemical sulfur-iodine cycle to split water in the hydrogen and oxygen. The size of composite granules have been mainly changed by the flow-rate of the gel mixture before dropping in the synthesis. The structural properties of the samples were comparable with granule size. In the reaction, the catalytic activity was enhanced by decreasing size in the entire reaction temperature ranges.

The Effects of the Nano-sized Adsorbing Material on the Electrochemical Properties of Sulfur Cathode for Lithium/Sulfur Secondary Battery (나노 흡착제가 Li/S 이차전지용 유황양극의 전기화학적 특성에 미치는 영향)

  • Song, Min-Sang;Han, Sang-Choel;Kim, Hyun-Seok;Ahn, Hyo-Jun;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.259-269
    • /
    • 2002
  • A battery based on the lithium/elemental sulfur redox couple has the advantage of high theoretical specific capacity of 1,675 mAh/g-sulfur. However, Li/S battery has bad cyclic durability at room temperature due to sulfur active material loss resulting from lithium polysulfide dissolution. To improve the cycle life of Li/S battery, PEGDME (Poly(ethylene glycol) dimethyl ether) 500 containing 1M LiTFSI salt which has high viscosity was used as electrolyte to retard the polysulfide dissolution and nano-sized $Mg_{0.6}Ni_{0.4}O$ was added to sulfur cathode as additive to adsorb soluble polysulfide within sulfur cathode. From experimental results, the improvement of the capacity and cycle life of Li/S battery was observed( maximum discharge capacity : 1,185 mAh/g-sulfur, C50/C1 = 85 % ). Through the charge-discharge test, we knew that PEGDME 500 played a role of preventing incomplete charge-discharge $behavior^{1,2)$. And then, in sulfur dissolution analysis and rate capability test, we first confirmed that nano-sized $Mg_{0.6}Ni_{0.4}O$ had polysulfide adsorbing effect and catalytic effect of promoting the Li/S redox reaction. In addition, from BET surface area analysis, we also verified that it played the part of increasing the porosity of sulfur cathode.

Changes of Halitosis during the Menstrual Cycle (월경주기와 구취의 변화에 관한 연구)

  • Kim, In-Jung;Choi, Jong-Hoon;Kim, Chong-Youl
    • Journal of Oral Medicine and Pain
    • /
    • v.26 no.1
    • /
    • pp.17-25
    • /
    • 2001
  • The purpose of this study is to evaluate the relationship of menstrual cycle and halitosis by measuring the concentrations of Voltile Sulfur Compounds, secretion rate of unstimulated saliva, secretion rate of stimulated saliva and viscosity of saliva during the menstrual cycle. The subjects were 19 female dental students of Yonsei University who had relatively good alignment of the teeth. They hadn't taken antibiotics or oral contraceptive pills during the few months prior to the experiment, and they didn't have any dental caries involving the pulp or periodontal disease. Lady-$Q^{(R)}$(Alpain Korea, Korea), which confirms the ovulation using saliva, was used to find out the menstrual cycle of subjects. Their history was taken and their basal body temperature was measured. On the basis of these data, the amount of Volatile Sulfur Compounds, secretion rate of unstimulated saliva, secretion rate of stimulated saliva, viscosity of saliva were measured during 1 day of the proliferative phase, 3 days of ovulatory phase and 1 day of the luteal phase within the menstrual cycle. The results were as follows : 1. The amount of Volatile Sulfur Compounds, secretion rate of unstimulated saliva, secretion rate of stimulated saliva, and viscosity of saliva showed no statistically significant cyclic change during proliferative phase, ovulatory phase, and luteal phase(p<0.05). 2. Between the secretion rate of unstimulated saliva and secretion rate of stimulated saliva, there was significant correlation during proliferative phase and luteal phase(p<0.05) and there was no significant correlation during ovulatory phase but relatively close result was seen. 3. The amount of Volatile Sulfur Compounds during proliferative phase and luteal phase had statistically significant correlation(p<0.05). 4. Secretion rate of stimulated saliva during proliferative phase and ovulatory phase, proliferative phase and luteal phase, ovulatory phase and luteal phase had significant correlations (p<0.01).

  • PDF

Effect of Preparation Parameters of Sulfur Cathodes on Electrochemical Properties of Lithium Sulfur Battery

  • Zhao, Xiaohui;Kim, Dul-Sun;Ahn, Hyo-Jun;Kim, Ki-Won;Jin, Chang-Soo;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.169-174
    • /
    • 2010
  • Sulfur cathodes were prepared by ball milling method with different types of electronic conductors and binders in different ball milling time. The sulfur cell with a cathode prepared in 45 min ball milling time gave an initial discharge capacity of 794mAh/g with Super-P as an electronic conductor and poly(vinylidene fluoride) as a binder. The cathode with multi-walled carbon nanotube as an electronic conductor showed an initial discharge capacity of 944 mAh/g and a discharge capacity of 300 mAh/g after 20 cycles. Cathodes with poly(ethylene oxide) and poly(vinylidene fluoride) as binders showed different cycle performance.