DOI QR코드

DOI QR Code

Chemical Constituents of the Fruiting Body of Xylaria polymorpha

  • Jang, Yun-Woo (Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Lee, In-Kyoung (Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Kim, Young-Sook (Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Seok, Soon-Ja (Rural Development Administration) ;
  • Yu, Seung-Hun (Department of Applied Biology, Chungnam National University) ;
  • Yun, Bong-Sik (Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University)
  • Published : 2009.09.30

Abstract

Xylaria, belonging to the Ascomycotina, is known to produce diverse classes of bioactive substances. In an effort to identify the chemical constituents of the fruiting bodies of Xylaria polymorpha, linoleic acid (1), linoleic acid methyl ester (2), ergosterol (3), 4-acetyl-3,4-dihydro-6,8-dihydroxy-3-methoxy-5-methyl-1H-2-benzopyran-1-one (4), and 4-hydroxyscytalone (5) were isolated from its methanolic extract. Their structures were assigned on the basis of various spectroscopic studies.

Keywords

References

  1. Boonphong, S., Kittakoop, R, Isaka, M., Pittayakhajonwut, D., Tanticharoen, M. and Thebtaranonth, Y. 2001. Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex. J. Nat. Prod. 64:965-967 https://doi.org/10.1021/np000291p
  2. Dahiya, J. S. and Rimmer, S. R. 1988. Accumulation of flaviolin, 4-hydroxyscytalone and 2-hydroxyjuglone in tricyciazoietreated cultures of Leptosphaeria maculans. Phytochemistry 27:3481-3482 https://doi.org/10.1016/0031-9422(88)80752-0
  3. Davis, R. A. 2005. Isolation and structure elucidation of the new fungal metabolite (-)-xylariamide A. J. Nat. Prod. 68:769-772 https://doi.org/10.1021/np050025h
  4. Healy, P. C., Hocking, A., Tran-Dinh, N., Pitt, J. I., Shivas, R. G, Mitchell, J. K., Kotiw, M. and Davis, R. A. 2004. Xanthones from a microfungus of the genus Xylaria. Phytochemistry 65:2373-2378 https://doi.org/10.1016/j.phytochem.2004.07.019
  5. Imazeki, R., Otani, Y. and Hongo, T. 1988. in Fungi of Japan, Yama-kei publishers, Tokyo
  6. Jang, Y.-W., Lee, I.-K., Kim, Y.-S., Lee, S., Lee, H.-J., Yu, S. H. and Yun, B.-S. 2007. Xylarinic acids A and B, new antifungal polypropionates from the fruiting body of Xylaria polymorpha. J. Antibiot. (Tokyo) 60:696-699 https://doi.org/10.1038/ja.2007.89
  7. Jayasuriya, H., Herath, K. B., Ondeyka, J. G, Polishook, J. D., Bills, G F., Dombrowsky, A. W., Springer, M. S., Siciliano, S., Malkowitz, L., Sanchez, M., Guan, Z., Tiwari, S., Stevenson, D. W., Borris, R. P. and Singh, S. 2004. Isolation and structure of antagonists of chemokine receptor (CCR5). J. Nat. Prod. 67:1036-1038 https://doi.org/10.1021/np049974l
  8. Krohn, K., Florke, U., Rao, M. S., Steingrover, K., Aust, H. J., Draeger, S. and Schulz, B. 2001. Metabolites from fungi 15. new isocoumarins from an endophytic fungus isolated from the Canadian thistle Cirsium arvense. Nat. Prod. Lett. 15:353-361
  9. Krohn, K., Sohrab, M. H., Aust, H. J., Draeger, S. and Schulz, B. 2004. Biologically active metabolites from fungi, 19: new isocoumarins and highly substituted benzoic acids from the endophytic fungus, Scytalidium sp. Nat. Prod. Res. 18:277-285 https://doi.org/10.1080/14786410310001620637
  10. Lee, I.-K., Jang, Y.-W., Kim, Y.-S., Yu, S. H., Lee, K. J., Park, S.-M., Oh, B.-T., Chae, J.-C. and Yun, B.-S. 2009. Xylarinols A and B, two new 2-benzoxepin derivatives from the fruiting bodies of XyIaria polymorpha. J. Antibiot. (Tokyo) 62:163-165 https://doi.org/10.1038/ja.2008.20
  11. Lin, Y., Wu, X., Feng, S., Jiang, G, Luo, J., Zhou, S., Vrijmoed, L. L. P., Jones, E. B. G, Krohn, K., Steingrover, K. and Zsila, F. 2001. Five unique compounds: xyloketals from mangrove fungus Xylaria sp. from the South China Sea coast. J. Org. Chem. 66:6252-6256 https://doi.org/10.1021/jo015522r

Cited by

  1. vol.40, pp.1, 2012, https://doi.org/10.5941/MYCO.2012.40.1.076
  2. vol.40, pp.2, 2012, https://doi.org/10.5941/MYCO.2012.40.2.142
  3. . and the Biological Potential of Their Secondary Metabolites vol.13, pp.6, 2016, https://doi.org/10.1002/cbdv.201500225
  4. pp.1478-6427, 2018, https://doi.org/10.1080/14786419.2017.1416378