기하대수에 의한 비정현파 다선식 전력계통에서의 피상전력의 표현

Representation of Apparent Power of Non-sinusoidal Multi-line Power System Using Geometric Algebra

  • 발행 : 2009.10.01

초록

According to recent researches, apparent power in a non-sinusoidal single phase system can be represented with geometric algebra. In this paper, the geometric algebra is applied to apparent power defined in a multi-line system having transmission lines with frequency-dependency under non-sinusoidal conditions.

키워드

참고문헌

  1. W.V. Lyon, 'Reactive power and unbalanced circuits', Electrical World, vol. 75, no. 25, pp. 1417-1420, 1920
  2. P.S. Filipski, Y. Baghzouz and M.D. Cox, 'Discussion of power definitions contained in the IEEE dictionary', IEEE Trans. Power Delivery, vol. 9, no. 3, pp. 1237-1244, July 1994 https://doi.org/10.1109/61.311149
  3. L.S. Czarnecki, 'What is wrong with the Budeanu Concept of Reactive and Distortion Power and Why It Should be Abandoned', IEEE Trans. Instrumentation and Measurement, vol. 36, no. 3, pp. 834-837, 1987
  4. P.S. Filipski, 'Apparent power - a misleading quantity in non-sinusoidal power theory: Are all non-sinusoidal power theories doomed to fail?', European Transactions on Electrical Power, vol. 3, no. 1, pp. 21-26, Jan./Feb. 1993 https://doi.org/10.1002/etep.4450030105
  5. A. Ferrero, 'Definitions of electrical quantities commonly used in nonsinusoidal conditions', ETEP, European Transactions on Electrical Power, vol. 8, no. 4, pp. 235-240, Jul./ Aug. 1998 https://doi.org/10.1002/etep.4450080403
  6. IEEE Trial-Use Standard: Definition for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, IEEE std. 1459, 2000
  7. H. Spath, 'A general purpose definition of active current and non-active power based on German standard DIN 40110', Electrical Engineering, vol. 89, pp. 167-175, 2007 https://doi.org/10.1007/s00202-005-0333-z
  8. M. Depenbrock, 'The FBD-method, a generally applicable tool for analyzing power relations', IEEE Trans. Power Systems, vol. 8, no. 2, pp. 381-387, May 1993 https://doi.org/10.1109/59.260849
  9. A.E. Emanuel, 'The Buchholz-Goodhue apparent power definition: The practical approach for nonsinusoidal and unbalanced system', IEEE Trans. Power Delivery, vol. 13, no. 2, pp. 344-350, Apr. 1998 https://doi.org/10.1109/61.660900
  10. A.E. Emanuel, 'Apparent power definition for three-phase systems', IEEE Trans. Power Delivery, vol. 14, no. 3, pp. 767-772, 1999 https://doi.org/10.1109/61.772313
  11. N. LaWhite and M.D. Ilic, 'Vector space decomposition of reactive power for periodic nonsinusoidal signals', IEEE Trans. Circuits and Systems, vol. 44, no. 4, pp. 338-346, 1997
  12. S.-J. Jeon, 'Considerations on a reactive power concept in a multi-line system', IEEE Trans. Power Delivery, vol. 21, no. 2, pp. 551-559, Apr. 2006 https://doi.org/10.1109/TPWRD.2005.861330
  13. J.G. Mayordomo and J. Usaola, 'Apparent power and power factor definitions for polyphase non-linear loads when supply conductors present different resistances', European Trans. Electr. Power, vol. 3, no. 6, pp. 415-420, 1993 https://doi.org/10.1002/etep.4450030604
  14. J.L. Willems, 'Critical analysis of the concepts of instantaneous power current and of active current', European Trans. Electrical Power vol. 8, no. 4 pp. 271-274, 1998 https://doi.org/10.1002/etep.4450080408
  15. S.-J. Jeon, 'Definitions of apparent power and power factor in a power system having transmission lines with unequal resistances', IEEE Trans. Power Delivery, vol. 20, no. 3, pp. 1806-1811, 2005 https://doi.org/10.1109/TPWRD.2005.848658
  16. S.-J. Jeon, 'Non-sinusoidal power theory in a power system having transmission lines with frequency- dependent resistances', IET Gener. Transm. Distrib., vol. 1, no. 2, pp. 331-339, Mar. 2007 https://doi.org/10.1049/iet-gtd:20050446
  17. L. Cristaldi and A. Ferrero, 'Mathmatical foundation of the instantaneous power concepts: an algebraic approach', European Trans. Electr. Power, vol. 6, no. 5, pp. 305-309, 1996 https://doi.org/10.1002/etep.4450060504
  18. A. Menti T. Zacharias and J. Milias-Artitis, 'Geometric algebra: a powerful tool for representing power under non sinusoidal conditions', IEEE Trans. Circuit and Systems, vol. 54, no. 3, pp. 601-609, Mar. 2007 https://doi.org/10.1109/TCSI.2006.887608
  19. M. Catilla, J. C. Bravo, M. Ordonez and J. C. Montano, 'Clifford theory: a geometrical interpretation of multivectorial apparent power', IEEE Trans. Circuit and Systems, vol. 55, no. 10, pp. 3358-3367, Nov. 2008 https://doi.org/10.1109/TCSI.2008.924885