Identification of Antioxidative Constituents from The Branches of Quercus gilva Blume

개가시나무 가지로부터 항산화성분의 규명

  • Moon, Mi-Youn (Department of Chemistry, Cheju National University) ;
  • Baik, Jong-Seok (Department of Chemistry, Cheju National University) ;
  • Kim, Sang-Suk (Department of Chemistry, Cheju National University) ;
  • Jang, Won-Jung (Department of Chemistry, Cheju National University) ;
  • Kim, Mi-Sun (Department of Beauty Design, Cheju Tourism College) ;
  • Lee, Nam-Ho (Department of Chemistry, Cheju National University)
  • 문미연 (제주대학교 자연과학대학 화학과) ;
  • 백종석 (제주대학교 자연과학대학 화학과) ;
  • 김상숙 (제주대학교 자연과학대학 화학과) ;
  • 장원정 (제주대학교 자연과학대학 화학과) ;
  • 김미선 (제주관광대학 뷰티디자인학과) ;
  • 이남호 (제주대학교 자연과학대학 화학과)
  • Published : 2009.09.30

Abstract

Investigation of antioxidative constituents from the ethanol extract of Quercus gilva branches led to the identification of four compounds; catechin (1), epi-catechin (2), tyrosol (3) and tiliroside (4). The antioxidative activity was examined using DPPH radical and superoxide anion radical scavenging method. The isolated compounds 1, 2, 3 and 4 exhibited 94.2 %, 93.4 %, 33.6 % and 11.2 % scavenging activities respectively against DPPH radicals at the concentration of $100{\mu}L$/mL. As well, the compounds $1{\sim}4$ showed respectively 60.2 %, 35.1 %, 20.6 %, 4.5 % inhibition activities against superoxide anion radicals at $200{\mu}L$/mL. Interestingly, the compounds $1{\sim}4$ were isolated for the first time from Quercus gilva Blume.

개가시나무 가지의 에탄올 추출물에서 항산화활성을 관찰하였으며, 활성성분을 규명하기 위한 연구를 진행하였다. 그 결과, 4종류의 화합물을 분리하여 동정하였다. 분리 동정된 성분은 catechin(1), epi-catechin(2), tyrosol(3) 및 tiliroside(4)이다. 분리 성분의 항산화활성은 DPPH 라디칼 및 superoxide 음이온 라디칼 소거활성을 이용하여 측정하였다. 화합물 1, 2, 3, 4는 $100{\mu}L$/mL 농도에서 각각 94.2 %, 93.4 %, 33.6 %, 11.2 %의 DPPH 라디칼 저해활성을 나타내었다. 또한, 화합물 1, 2, 3, 4는 $200{\mu}L$/mL 농도에서 각각 60.2 %, 35.1 %, 20.6%, 4.5 %의 superoxide 음이온 라디칼 저해활성을 나타내었다. 화합물 $1{\sim}4$는 개가시나무에서는 처음으로 분리된 물질이다.

Keywords

References

  1. Y. N. Lee, Flora of Korea, Kyohak Publishing Co. Seoul, Korea, 68 (2004)
  2. T. Yasuhide, K. Yashikai, S. Jiro, T. Ichiro, and I. Hidei, Studies on the constituents of Quercus spp. VII. triterpenes of Quercus gilva blume, Yakugaku Zassi, 96, 1213 (1976) https://doi.org/10.1248/yakushi1947.96.10_1213
  3. I. Hidei, T. Yasuhide, K. Yashiaki, and I. Yoichi, Structure of gilvanol, a new triterpene isolated from Quercus gilva blume, Chem. Pharm. Bull., 26, 331 (1978) https://doi.org/10.1248/cpb.26.331
  4. P. M. Tyrell and P. Mireille, Single oxygen involvement in the inactivation of cultured human fibroblasts by UVA (334 nm, 365 nm) and near-visible (405 nm) radiations, Photochem. Photobiol., 49, 407 (1989) https://doi.org/10.1111/j.1751-1097.1989.tb09187.x
  5. K. Chiba, T. Stone, K. Kawakami, and M. Onue, Skin roughness and wrinkle formation induced by repeated application of squalene monohydroperoxide to the hairless mouse, Exp. Dermatol., 8, 471 (1999) https://doi.org/10.1111/j.1600-0625.1999.tb00305.x
  6. H. Tanaka, T. Okada, H. Konishi, and T. Tsuji, The effect of reactive oxygen species on the biosynthesis of collagen and glucosaminoglycans in cultured human dermal fibroblasts, Arch. Dermatol. Res., 285, 352 (1993) https://doi.org/10.1007/BF00371836
  7. N. Noguchi, Y. Iwaki, M. Takahashi, E. Komuro, Y. Kato, K. Tamura, O. Cynshi, T. Kodama, and E. Niki, 2,3-Dihydro-5-hydroxy-2,2-dipentyl-4,6 tertbutylbenzofuran: design and evaluation as a novel radical-scavenging antioxidant against lipid peroxidation, Arch. Biochem. Biophys., 342, 236 (1997) https://doi.org/10.1006/abbi.1997.9994
  8. J. M. Kim, R. K. Ko, J. W. Hyun, and N. H. Lee, Identification of new dibenzofurans from Distylium racemosum, Bull. Korean Chem. Soc., 30, 261 (2009) https://doi.org/10.5012/bkcs.2009.30.1.261
  9. R. K. Ko, S. Lee, C. G. Hyun, and N. H. Lee, New dibenzofurans from the branches of Distylium racemosum sieb. et Zucc, Bull. Korean Chem. Soc., 30, 1376 (2009) https://doi.org/10.5012/bkcs.2009.30.6.1376
  10. N. Sultana and N. H. Lee, New phenylpropanoids from Sasa quelpaertensis nakai with tyrosinase inhibition activities, Bull. Korean Chem. Soc., 30, 1729 (2009) https://doi.org/10.5012/bkcs.2009.30.8.1729
  11. Y. N. Lee, K. S. Lee, and Y. H. Shin, Wild Plants of Jeju Island, Yeomiji Botanical Garden, Jeju, Korea, 1 (2001)
  12. N. Sultana and N. H. Lee, Antielastase and free radical scavenging activities of compounds from stems of Cornus kousa, Phytotherapy Res., 21, 1171 (2007) https://doi.org/10.1002/ptr.2230
  13. M. E. Hildago, E. Fernandez, W. Quilhot, and E. Lissi. Antioxidant capacity of depsodes and depsidones. Phytochemistry, 37, 1585 (1994) https://doi.org/10.1016/S0031-9422(00)89571-0
  14. I. H. Kang, J. H. Cha, S. W. Lee, H. J. Kim, S. H. Kwon, I. H. Ham, B. S. Hwang, and W. K. Whang, Isolation of anti-oxidant from domestic Cratagus pinnatifida bunge leaves, Kor. J. Pharmacogn., 36, 121 (2005)
  15. N. F. Komissarenko, E. V. Krivoruchko, V. S. Kislichenko, and V. N. Kovalev, Tyrosol from Ribes nigrum, Chem. Natural Compound, 33, 97 (1997) https://doi.org/10.1007/BF02273935
  16. K. Y. Jung, S. R. Oh, S. H. Park, I. S. Lee, K. S. Ahn, J. J. Lee, and H. Lee, Anti-complement activity of tiliroside from the flower bud of Magnolia fargesii, Biol. Pharm. Bull., 21, 10 (1998) https://doi.org/10.1248/bpb.21.10