Study on the Optimization of Cationic Ring Opening Polymerization of Silicone-Based Epoxy Monomers for Holographic Photopolymers

  • Kim, Dae-Heum (Chemical Engineering Department, Kwangwoon University) ;
  • Chung, Dae-Won (Department of Polymer Engineering, University of Suwon)
  • Published : 2009.09.25

Abstract

This study examined the optimum compositions of binder, photo-acid generator (PAG) and sensitizer for the cationic ring opening polymerization of 1,3-bis[2-(3-{7-oxabicyclo-[4.1.0]heptyl})]-tetramethyldisiloxane in the presence of polydimethylsiloxane with four epoxide moieties as a co-monomer. When diffractive efficiency (DE) values were compared quantitatively to analyze the effect of the binder on holographic photopolymerization, DE was affected by the viscosity of the binders and miscibility with the monomer mixture. Extremely low DE values were observed when the immiscible dimethyl silicone was used as a binder. Therefore, methylphenyl silicone, which is miscible with the monomer mixture, was used as the binder for further studies. The optimal conditions were a binder viscosity between 250 to 390 cP, and contents of the binder, PAG, and sensitizer were 75-125 wt%, > 6 wt% and 0.05 wt% to the total monomer mixture, respectively.

Keywords

References

  1. A. Pu and D. Pasaltis, Appl. Opt., 35, 2389 (1996) https://doi.org/10.1364/AO.35.002389
  2. W. S. Colburn, J. Imaging Sci. Technol., 41, 443 (1997)
  3. D. H. Close, A. D. Jacobson, I. D. Margerum, R. G. Brault, and F. J. McClung, Appl. Phys. Lett., 14, 159 (1969) https://doi.org/10.1063/1.1652756
  4. S. Sugawara, K. Murase, and T. Kitayama, Appl. Opt., 14, 378 (1975) https://doi.org/10.1364/AO.14.000378
  5. K. Sukegawa, S. Sugawara, and K. Murase, Electron. Commun. Jpn., 58-C, 132 (1975)
  6. S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, Appl. Phys. Lett., 75, 1628 (1998)
  7. B. L. Booth, Appl. Opt., 14, 593 (1975) https://doi.org/10.1364/AO.14.000593
  8. B. M. Monroe, J. Imaging Sci., 35, 25 (1991)
  9. V. Moreau, Y. Renotte, and Y. Lion, Proc. SPIE, 3951, 108 (1999)
  10. J. R. Lawrence, F. T. O'neill, and J. T. Sheridan, Appl. Opt., 112, 449 (2001)
  11. N. Kim, E. S. Hwang, and C. W. Shin, J. Opt. Soc. Korea, 10, 1 (2006) https://doi.org/10.3807/JOSK.2006.10.1.001
  12. Y. M. Chang, S. C. Yoon, and M. J. Han, Opt. Mater., 30, 662 (2007) https://doi.org/10.1016/j.optmat.2007.02.050
  13. D. H. Choi, M. J. Cho, H. Yoon, H. N. Yoon, J. H. Kim, and S. H. Paek, Opt. Mater., 27, 85 (2004) https://doi.org/10.1016/j.optmat.2004.02.010
  14. P. Forcen, L. Oriol, C. Sanchez, F. J. Rodriguez, R. Alcala, S. Hvilsted, and K. Jankova, Eur. Polym. J., 43, 3292 (2007) https://doi.org/10.1016/j.eurpolymj.2007.05.004
  15. W. H. Jung, E. J. Ha, I. D. Chung, and J. O. Lee, Macromol. Res., 16, 532 (2008) https://doi.org/10.1007/BF03218555
  16. H. C. Yeong and K. Yusuke, Polym. J., 38, 678 (2006) https://doi.org/10.1295/polymj.PJ2005201
  17. J. H. Kim, H. J. Oh, and E. Y. Kim, J. Mater. Chem., 18, 4762 (2008) https://doi.org/10.1039/b809275c
  18. J. V. Crivello and Z. Mao, Chem. Mater., 9, 1554 (1997) https://doi.org/10.1021/cm960591l
  19. J. V. Crivello, Radiat. Phys. Chem., 63, 21 (2002) https://doi.org/10.1016/S0969-806X(01)00476-5
  20. J. V. Crivello and J. H. W. Lam, Macromolecules, 10, 1307 (1977) https://doi.org/10.1021/ma60060a028
  21. J. V. Crivello, J. V. Crivello, Nucl. Instr. Methods, B 151, 8 (1999). 151, 8 (1999) https://doi.org/10.1016/S0168-583X(99)00109-3
  22. W. G. Kim, H. K. Ahn, H. W. Lee, S. H. Kim, and J. V. Crivello, Opt. Mater., 21, 343 (2002)
  23. J. V. Crivello, Radiat. Phys. Chem., 63, 21 (2002) https://doi.org/10.1016/S0969-806X(01)00476-5
  24. J. V. Crivello and M. Jang, J. Photochem. Photobiol. Chem., 159, 173 (2003) https://doi.org/10.1016/S1010-6030(03)00182-5
  25. E. A. Cetin, R. A. Minns, and D. A. Waldman, USP 6784300 (2004)
  26. D. G. Kim, J. Y. Lim, S. W. Nam, and D. Chung, J. Opt. Soc. Korea, 11, 183 (2007) https://doi.org/10.3807/JOSK.2007.11.4.183
  27. D. Chung, J. P. Kim, D. H. Kim, and J. Y. Lim, J. Ind. Eng. Chem., 12, 783 (2006)
  28. S. T. Phan, W. C. Lim, J. S. Han, I. N. Jung, and B. R. Yoo, J. Organomet. Chem., 691, 604 (2006) https://doi.org/10.1016/j.jorganchem.2005.10.001
  29. B. Marciniec, J. Gulinski, W. Urbaniak, and Z. W. Kornetka, in Comprehensive handbook on hydrosilylation, B. Marciniec, Ed., Pergamon, Oxford, 1992
  30. Y. Kang, Y. H. Seo, D. W. Kim, and C. Lee, Macromol. Res., 12, 431 (2004) https://doi.org/10.1007/BF03218423
  31. Y. Ishida, K. Yokomachi, M. Seino, T. Hayakawa, and M. A. Kakimoto, Macromol. Res., 15, 147 (2007) https://doi.org/10.1007/BF03218766
  32. S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W. J. Joo, and D. H. Choi, Macromol. Res., 16, 31 (2008) https://doi.org/10.1007/BF03218957
  33. M. L. Vadala, M. Rutnakornpituk, M. A. Zalich, T. G. St Pierre, and J. S. Riffle, Polymer, 45, 7449 (2004) https://doi.org/10.1016/j.polymer.2004.09.001
  34. D. Kim, Y. Kim, S. Park, and S. Nam, J. Polym. Soc. Korea, 8, 515 (2004)
  35. D. W. Chung and T. G. Kim, J. Ind. Eng. Chem., 13, 979 (2007)
  36. K. D. Pradeep, G. H. Michael, T. I. Richard, S. K. Eric, G. M. Parag, A. M. Richard, G. S. Howard, and A. W. David, USP 5759721 (1996)
  37. P. K. Dhal, M. G. Horner, R. T. Ingwall, E. S. Kolb, P. G. Mehta, R. A. Minns, H. G. Schild, and D. A. Waldman, USP 5759721 (1998)
  38. H. Choi, D. J. Feng, H. N. Yoon, and S. H. Choi, Macromol. Res., 11, 36 (2003) https://doi.org/10.1007/BF03218275