Self-doped Carboxylated Polyaniline: Effect of Hydrogen Bonding on the Doping of Polymers

  • Kim, Seong-Cheol (School of Textiles, Yeungnam University) ;
  • Whitten, James (The Center for Advanced Materials, Polymer Science Program, Departments of Chemistry and Physics, University of Massachusetts Lowell) ;
  • Kumar, Jayant (The Center for Advanced Materials, Polymer Science Program, Departments of Chemistry and Physics, University of Massachusetts Lowell) ;
  • Bruno, Ferdinando F. (Army Natick Soldier Development and Engineering Center) ;
  • Samuelson, Lynne A. (Army Natick Soldier Development and Engineering Center)
  • Published : 2009.09.25

Abstract

This study examined the unique self-doping behavior of carboxylated polyaniline (PCA). The self-doped PCA was synthesized using an environmentally benign enzymatic polymerization method with cationic surfactants. XPS showed that HCl-doped PCA contained approximately 34% of protonated amines but self-doped PCA contained 9.6% of the doped form of nitrogen at pH 4. FTIR and elemental analysis showed that although the PCA was doped with the proton of strong acids at low pH via the protonation of amines, the self-doping mechanism of PCA at pH > 4 was mainly due to hydrogen bonding between the carboxylic acid group and amine group.

Keywords

References

  1. C. Barbero and R. Kötz, Adv. Mater., 6, 577 (1994) https://doi.org/10.1002/adma.19940060711
  2. S.-A. Chen and M.-Y. Hua, Macromolecules, 26, 7108 (1993) https://doi.org/10.1021/ma00077a066
  3. N. Zhang, R. Wu, Q. Li, K. Pakbaz, C. O. Yoon, and F. Wudl, Chem. Mater., 5, 1598 (1993) https://doi.org/10.1021/cm00035a003
  4. E. M. Genies, A. Boyle, M. Lapkowski, and C. Tsintavis, Synth. Met., 36, 139 (1990) https://doi.org/10.1016/0379-6779(90)90050-U
  5. A. G. MacDiarmid, J. C. Chiang, and A. J. Epstein, Faraday Discuss. Chem. Soc., 88, 317 (1989) https://doi.org/10.1039/dc9898800317
  6. W. R. Salaneck, I. Lunström, W. S. Haung, and A. G. MacDiarmid, Synth. Met., 13, 291 (1986) https://doi.org/10.1016/0379-6779(86)90190-6
  7. J. L. Dektar and N. P. Hacker, J. Org. Chem., 53, 1833 (1988) https://doi.org/10.1021/jo00243a053
  8. A. G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001) https://doi.org/10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
  9. K. Krishnamoorthy, A. Q. Contractor, and A. Kumar, Chem. Comm., 240 (2002)
  10. H. Krass, G. Papastavrou, and D. G. Kurth, Chem. Mater., 15, 196 (2003) https://doi.org/10.1021/cm020808d
  11. V. V. Tsukruk, V. N. Bliznyuk, D. Visser, A. L. Campbell, T. J. Bunning, and W. W. Adams, Macromolecules, 30, 6615 (1997) https://doi.org/10.1021/ma961897g
  12. J. Jang, Adv. Polym. Sci., 199, 189 (2006) https://doi.org/10.1007/12_075
  13. J. Jang, J. S. Ha, and S. H. Kim, Macromol. Res., 15, 154 (2007) https://doi.org/10.1007/BF03218767
  14. M. Choi, B. Lim, and J. Jang, Macromol. Res., 16, 200 (2008) https://doi.org/10.1007/BF03218853
  15. H. Namgoong, D. J. Woo, and S. H. Lee, Macromol. Res., 15, 633 (2007) https://doi.org/10.1007/BF03218943
  16. C. Park, M. Rhue, M. Im, and C. Kim, Macromol. Res., 15, 688 (2007) https://doi.org/10.1007/BF03218951
  17. R. Garcia-Lopera, I. S. Monzo, and A. Campos, Macromol. Res., 16, 446 (2008) https://doi.org/10.1007/BF03218544
  18. I. B. Kim, A. Dunkhorst, J. Gilbert, and U. H. F. Bunz, Macromolecules, 38, 4560 (2005) https://doi.org/10.1021/ma050595o
  19. K. Yamamoto and D. Taneichi, Macromol. Chem. Phys., 201, 6 (2000) https://doi.org/10.1002/(SICI)1521-3935(20000101)201:1<6::AID-MACP6>3.0.CO;2-3
  20. J. S. Dordick, Enzyme Microb. Technol., 11, 194 (1989) https://doi.org/10.1016/0141-0229(89)90094-X
  21. J. A. Akara, D. L. Kaplan, V. J. John, and S. K. Tripath, in Polymeric Materials Encyclopedia, J. C. Salamone, Ed., vol. 3, D-E. Boca Raton, FL, CRC Press, 1996, pp 2116-2125
  22. W. Liu, J. Kumar, S. Tripathy, K. J. Senecal, and L. A. Samuelson, J. Am. Chem. Soc., 121, 71 (1999) https://doi.org/10.1021/ja982270b
  23. L. A. Samuelson, A. Anagnostopoulos, K. S. Alva, J. Kumar, and S. K. Tripathy, Macromolecules, 31, 4376 (1998) https://doi.org/10.1021/ma980258y
  24. M. Thiyagarajan, L. A. Samuelson, J. Kumar, and A. L. Cholli, J. Am. Chem. Soc., 125, 11502 (2003) https://doi.org/10.1021/ja035414h
  25. S. C. Kim, D. Sandman, J. Kumar, F. F. Bruno, and L. A. Samuelson, Chem. Mater., 18, 2201 (2006) https://doi.org/10.1021/cm052206a
  26. N. Lang and A. Tuel, Chem. Mater., 16, 1961 (2004) https://doi.org/10.1021/cm030633n
  27. C. Walsh, in Enzymatic Reaction Mechanisms, San Francisco, W. H. Freeman and Company, 1979, p 493
  28. A. Akeson and A. Ehrenberg, Eds., in Structure and Function of Oxidation-Reduction Enzymes, Elsevier, N. Y., 1972, p 323
  29. A. J. Epstein, J. M. Ginder, F. Zuo, W. R. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W. S. Huang, and A. G. MacDiarmid, Synth. Met., 18, 303 (1987) https://doi.org/10.1016/0379-6779(87)90896-4
  30. A. G. MacDiarmid, J. C. Chiang, A. G. Richter, and A. J. Epstein, Synth. Met., 18, 285 (1987) https://doi.org/10.1016/0379-6779(87)90893-9
  31. P. M. McManus, R. J. Cushman, and S. C. Yang, J. Phys. Chem., 91, 744 (1987) https://doi.org/10.1021/j100287a050
  32. S. Stafström, J. L. Brédas, A. J. Epstein, H. S. Woo, D. B. Tanner, W. S. Huang, and A. G. MacDiarmid, Phys. Rev. Lett., 59, 1464 (1987) https://doi.org/10.1103/PhysRevLett.59.1464
  33. Y. Xia, A. G. MacDiarmid, and A. J. Epstein, Macromolecules, 27, 7212 (1994) https://doi.org/10.1021/ma00102a033
  34. J. M. Ginder and A. J. Epstein, Phys. Rev. B, 41, 10674 (1990) https://doi.org/10.1103/PhysRevB.41.10674
  35. J. M. Ginder, A. J. Epstein, and A. G. MacDiarmid, Solid State Commun., 72, 987 (1989) https://doi.org/10.1016/0038-1098(89)90613-3
  36. D. S. Boudreaux, R. R. Chance, J. F. Wolf, L. W. Shacklette, J. L. Braas, B. Thémans, J. M. André, and R. J. Silbey, Chem. Phys., 85, 4584 (1986)
  37. C. B. Duke, A. Paton, E. M. Conwell, W. R. Salaneck, and I. Lundstrom, J. Chem. Phys., 86, 3414 (1987)
  38. W. B. Euler, Solid State Commun., 57, 857 (1986) https://doi.org/10.1016/0038-1098(86)90166-3
  39. W. S. Huang, B. D. Humphrey, and A. G. MacDiarmid, J. Chem. Soc., Faraday Trans.1, 82, 2385 (1986)
  40. R. Ma$\check{z}\check{z}$eikien$\acute{a}$, G. Niaura, and A. Malinauskas, Synth. Met., 139, 89 (2003) https://doi.org/10.1016/S0379-6779(03)00037-7
  41. S. Y$\ddot{a}$cel, P. Kadir, and Y. Attila, Synth. Met., 129, 107 (2002) https://doi.org/10.1016/S0379-6779(01)00650-6
  42. S. A. Chen and G. W. Hwang, J. Am. Chem. Soc., 117, 10055 (1995) https://doi.org/10.1021/ja00145a017
  43. F. A. Carey, in Organic Chemistry, 2nd ed., McGraw-Hill, Inc., N. Y., 1987, p 774
  44. J. D. Dick, in Analytical Chemistry, McGraw-Hill, Inc., N. Y., 1973, p 273
  45. W. Liu, A. L. Cholli, R. Nagarajan, J. Kumar, S. Tripathy, F. F. Bruno, and L. A. Samuelson, J. Am. Chem. Soc., 121, 11345 (1999) https://doi.org/10.1021/ja9926156
  46. X. L. Wei, M. Fahlman, and A. J. Epstein, Macromolecules, 32, 3114 (1999) https://doi.org/10.1021/ma981386p
  47. B. Xu, B. Varughese, D. Evans, and J. Reutt-Robey, J. Phys. Chem. B, 110, 1271 (2006) https://doi.org/10.1021/jp0541314
  48. J. Wang, S. Yang, M. Chen, and Q. Xue, Surf. Coat. Tech., 176, 229 (2004) https://doi.org/10.1016/S0257-8972(03)00632-7
  49. P. C. Rodrigues, M. Muraro, C. M. Garcia, G. P. Souza, M. Abbate, W. H. Schreiner, and M. A. B. Gomes, Eur. Polym. J., 37, 2217 (2001) https://doi.org/10.1016/S0014-3057(01)00104-5
  50. P. J. Trotter, M. G. Mason, and L. J. Gerenser, J. Phys. Chem., 81, 1325 (1977) https://doi.org/10.1021/j100528a004
  51. N. B. Colthup, L. H. Daly, and S. E. Wiberley, in Introduction to Infrared and Raman Spectroscopy, Academic Press, N. Y., 1975, Chapter 9
  52. Z. Xu, H. Li, C. Wang, H. Pan, and S. Han, J. Chem. Phys., 124, 244502 (2006) https://doi.org/10.1063/1.2206177