Microstructure and Properties of Fully Aliphatic Polyimide/Mesoporous Silica Hybrid Composites

  • Mathewst, Anu Stella (Department of Polymer Science and Engineering, Pusan National University) ;
  • Jung, Yu-In (Department of Polymer Science and Engineering, Pusan National University) ;
  • Lee, Tae-Sung (Department of Polymer Science and Engineering, Pusan National University) ;
  • Park, Sung-Soo (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Il (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University) ;
  • Selvaraj, M. (Department of Chemical Engineering, Pusan National University) ;
  • Han, Mi-Jeong (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 발행 : 2009.09.25

초록

We report the effect of the amount of the mesoporous material, SBA-15, on the basic traits of fully aliphatic polyimides (API). For this purpose, water soluble, fully aliphatic poly(amic acid) triethyl amine salts ($PAA_{(s)}$) were prepared and mixed with various amounts of SBA-15. Fully aliphatic polyimide hybrid composites containing the SBA 15-type mesoporous silica were synthesized successfully from bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride and alicyclic diamine, 4,4'-methylene bis(2-methylcyclohexylamine). The structure of the hybrid composites was confirmed by IR spectroscopic analysis. Scanning electron microscopy revealed the morphology of the compounds. The hybrid composites exhibited good thermal stability, reasonable transparency, and a low dielectric constant.

키워드

참고문헌

  1. R. I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs, and A. E. Ostafin, Chem. Mater., 14, 4721 (2002) https://doi.org/10.1021/cm0204371
  2. C. E. Fowler, D. Khushalani, B. Lebeau, and S. Mann, Adv. Mat., 13, 649 (2001) https://doi.org/10.1002/1521-4095(200105)13:9<649::AID-ADMA649>3.0.CO;2-G
  3. A. Y. Khodakov, V. L. Zholobenko, R. Bechara, and D. Durand, Micropor. Mesopor. Mater., 79, 29 (2005) https://doi.org/10.1016/j.micromeso.2004.10.013
  4. L. Qingyi, G. Feng, K. Sridhar, and E. M. Thomas, J. Am. Chem. Soc., 126, 8650 (2004) https://doi.org/10.1021/ja0488378
  5. M. Can, B. Akça, A. Yilmaz, and D. $\ddot{a}$ner, Turk. J. Phys., 29, 287 (2005)
  6. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, and B. F. Chmelka, Science, 279, 548 (1998) https://doi.org/10.1126/science.279.5350.548
  7. J. Y. Lee, J. H. Kim, and B. K. Rhee, Macromol. Res., 15, 234 (2007) https://doi.org/10.1007/BF03218781
  8. A. S. Mathews, I. Kim, and C. S. Ha, J. Appl. Polym. Sci., 102, 3316 (2006) https://doi.org/10.1002/app.24800
  9. A. S. Mathews, I. Kim, and C. S. Ha, J. Polym. Sci. Part A: Polym. Chem., 44, 5254 (2006) https://doi.org/10.1002/pola.21636
  10. A. S. Mathews, I. Kim, and C. S. Ha, Macromol. Res., 15, 114 (2007) https://doi.org/10.1007/BF03218762
  11. J. Yang and M. H. Lee, Macromol. Res., 12, 263 (2004) https://doi.org/10.1007/BF03218398
  12. T. Lee, S .S. Park, Y. Jung, S. Han, D. Han, I. Kim, and C. S. Ha, Eur. Polym. J., 45, 19 (2009) https://doi.org/10.1016/j.eurpolymj.2008.09.022
  13. W. Guo, J. Y. Park, M. O. Oh, H. W. Jeong, W. J. Cho, I. Kim, and C. S. Ha, Chem. Mater., 15, 2295 (2003) https://doi.org/10.1021/cm0258023
  14. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science, 279, 548 (1998) https://doi.org/10.1126/science.279.5350.548
  15. J. Yoon, K. W. Kim, J. Kim, K. Heo, K. S. Jin, S. Jin, T. J. Shin, B. Lee, Y. Rho, B. Ahn, and M. Ree, Macromol. Res., 16, 275 (2008)
  16. S. Brunauer, L. Deming, W. Deming, and E. Teller, J. Am. Chem. Soc., 62, 1723 (1940) https://doi.org/10.1021/ja01864a025
  17. Y. F. Shi, Y. Meng, D. H. Chen, S. J. Cheng, P. Chen, H. F. Yang, Y. Wan, and D. Zhao, Adv. Funct. Mater., 16, 561 (2006) https://doi.org/10.1002/adfm.200500643
  18. Y. Kim, K. Han, and C. S. Ha, Macromolecules, 35, 8759 (2002) https://doi.org/10.1021/ma020688v
  19. Y. Watanabe, Y. Sakai, M. Ueda, Y. Oishi, and K. Mori, Chem. Lett., 29, 450 (2000) https://doi.org/10.1246/cl.2000.450
  20. K.G. Sharp, Adv. Mater., 10, 1243 (1998) https://doi.org/10.1002/(SICI)1521-4095(199810)10:15<1243::AID-ADMA1243>3.0.CO;2-6
  21. J. Y. Wen and G. L. Wilkes, Chem. Mater., 8, 1667 (1996) https://doi.org/10.1021/cm9601143
  22. J. Lin and X. Wang, Polymer, 48, 318 (2007) https://doi.org/10.1016/j.polymer.2006.10.037
  23. C. F. Chen, H. H. Cheng, P. W. Cheng, and Y. J. Lee, Macromolecules, 39, 7583 (2006) https://doi.org/10.1021/ma060990u
  24. C. Suryanarayanan and M. G. Norton, X-Ray Diffraction: A Practical Approach, Plenum, New York, 1998, Chapter 3, p 80
  25. T. J. Hernandez and G. A. Mendoza, J. Non-Cryst. Solids, 351, 2029 (2005) https://doi.org/10.1016/j.jnoncrysol.2005.05.011
  26. M. A. Wahab, I. Kim, and C. S. Ha, Polymer, 44, 4705 (2003) https://doi.org/10.1016/S0032-3861(03)00429-4
  27. C. K. Min, T. B. Wu, W. T. Yang, and C. L. Chen, Compos. Sci. Tech., 68, 1570 (2008) https://doi.org/10.1016/j.compscitech.2007.09.021