DOI QR코드

DOI QR Code

A Study of the Properties of Optically Induced Layers in Semiconductors Aided by the Reflection of Optically Controlled Microwave Pulses

  • Wang, Xue (Division of Electrical Electronic & Information Engineering, Wonkwang University) ;
  • Choi, Yue-Soon (Division of Electrical Electronic & Information Engineering, Wonkwang University) ;
  • Park, Jong-Goo (Division of Electrical Electronic & Information Engineering, Wonkwang University) ;
  • Kim, Yong-K. (Division of Electrical Electronic & Information Engineering, Wonkwang University)
  • Published : 2009.08.31

Abstract

We present a study on the reflection of optically controlled microwave pulses from non uniform plasma layers in semiconductors. The transient response of the microwave pulses in different plasma layers has been evaluated by means of the reflection function of dielectric microstrip lines. The lines were used with an open-ended termination containing an optically induced plasma region, which was illuminated by a light source. The reflection characteristics impedance resulting from the presence of plasma is evaluated by means of the equivalent transmission line model. We have analyzed the variation of the transient response in a 0.01 cm layer with a surface frequency in the region of 128 GHz. In the reflection the variation of the diffusion length $L_D$ is large compared with the absorption depth $1/{\alpha}_l$. The variation of the characteristic response of the plasma layer with differentially localized pulses has been evaluated analytically. The change of the reflection amplitude has been observed at depths of 0.1 cm, 0.01 cm and $0.1{\times}10^{-5}$ cm respectively.

Keywords

References

  1. S. K. Dana, H. Shimasaki, and M. Tsutsumi, IEEE Trans. on Microwave theory and Tech. 50, 124 (2002). https://doi.org/10.1109/22.981267
  2. J. Y. Hwang, K. S. Park, D. S. Seo, S. H. Nam, and Dong H. Suh,J. of KIEEME(in Korean) 15, 253 (2002).
  3. W. K. Lee, I. H. Choi, K. Y. Shin, K. C. Hwang, and S. W. Han, Trans. Electr. Electron. Mater. 9, 147 (2008). https://doi.org/10.4313/TEEM.2008.9.4.147
  4. M. R. Chaharmir, J. Shaker, M. Cuhaci, and A. Sebak, IEEE CCE&CE2002, 1, 333 (2002).
  5. W. K. Lee, I. H. Choi, J. K. Choi, K. C. Hwang, and S. W. Han, Trans. Electr. Electron. Mater. 9, 143 (2008). https://doi.org/10.4313/TEEM.2008.9.4.143
  6. Y. K. Kim, J. S. Kim, and K. S. Park, KIEE Int. Trans. EA 4-C, 236 (2004).
  7. Tsutsumi, M., Dana, S. K., and Shimasaki, H., Microwave Conference, 1999 Asia Pacific 2, 327 (1999).
  8. A. Tip, Physical Review E 69, 166 (2004). https://doi.org/10.1103/PhysRevE.69.016610
  9. J. K. Butler, T. F. Wu, and Marion W. Scott, IEEE Trans. on Microwave theory and Tech, 34, 567 (1986).
  10. Matthew N. O. Sadiku, Elements of electromagnetic (3/E), (Oxford University Press, London, 2000), p. 240
  11. T. Ueda and M. Tsutsumi, IEICE Trans. Electron E-89C, 1318(2006).
  12. Y. Shen, K. Nickerson, and John Litva, IEEE Trans. Microwave Theory and Techniques 41, 1005 (1993). https://doi.org/10.1109/22.238516
  13. Palais Joseph C., Fiber Optics Communications (5/E), (Prentice Hall, New Jersey, 2005), p. 113
  14. X. Wang, K. W. Kim, and Yong K. Kim, Trans. Electr. Electron.Mater. 10, 53 (2009). https://doi.org/10.4313/TEEM.2009.10.2.053