DOI QR코드

DOI QR Code

Electrochemical Activation of Nitrate Reduction to Nitrogen by Ochrobactrum sp. G3-1 Using a Noncompartmented Electrochemical Bioreactor

  • Lee, Woo-Jin (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2009.08.31

Abstract

A denitrification bacterium was isolated from riverbed soil and identified as Ochrobactrum sp., whose specific enzymes for denitrification metabolism were biochemically assayed or confirmed with specific coding genes. The denitrification activity of strain G3-1 was proportional to glucose/nitrate balance, which was consistent with the theoretical balance (0.5). The modified graphite felt cathode with neutral red, which functions as a solid electron mediator, enhanced the electron transfer from electrode to bacterial cell. The porous carbon anode was coated with a ceramic membrane and cellulose acetate film in order to permit the penetration of water molecules from the catholyte to the outside through anode, which functions as an air anode. A non-compartmented electrochemical bioreactor (NCEB) comprised of a solid electron mediator and an air anode was employed for cultivation of G3-1 cells. The intact G3-1 cells were immobilized in the solid electron mediator, by which denitrification activity was greatly increased at the lower glucose/nitrate balance than the theoretical balance (0.5). Metabolic stability of the intact G3-1 cells immobilized in the solid electron mediator was extended to 20 days, even at a glucose/nitrate balance of 0.1.

Keywords

References

  1. Abril, O. and G. M. Whitesides. 1982. Hybrid organometallic/ enzymatic catalyst systems: Regeneration of NADH using dihydrogen. J. Am. Chem. Soc. 104: 1552-1554 https://doi.org/10.1021/ja00370a017
  2. Braker, G. and J. M. Teidje. 2003. Nitric oxide reductase (norB) genes from pure culture and environmental samples. Appl. Environ. Microbiol. 69: 3476-3483 https://doi.org/10.1128/AEM.69.6.3476-3483.2003
  3. Brooks, M. H., R. L. Smith, and D. L. Macalady. 1992. Inhibition of existing denitrification enzyme activity by chloramphenicol. Appl. Environ. Microbiol. 58: 1746-1753
  4. Choi, K. O., S. H. Song, Y. H. Kim, D. H. Park, and Y. J. Yoo. 2006. Bioelectrochemical denitrification using permeabilized Ochrobactrum anthropi SY509. J. Microbiol. Biotechnol. 16: 678-682
  5. Cole, J. 1993. Controlling environmental nitrogen through microbial metabolism. Tibtech 11: 368-372 https://doi.org/10.1016/0167-7799(93)90160-B
  6. Garcia-Ruiz, R., S. N. Pattinson, and B. A. Whitton. 1998. Kinetic parameters of denitrification in a river continuum. Appl. Environ. Microbiol. 64: 2533-2538
  7. Gauthier, D. K., G. D. Clark-Walker, W. T. Garrard Jr., and J. Lascelles. 1970. Nitrate reductase and soluble cytochrome C in Spirillum itersonii. J. Bacteriol. 102: 797-803
  8. Hoeren, F. U., B. C. Berks, S. J. Ferguson, and J. E. McCarthy. 1993. Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase from Paracoccus denitrificans. New and conserved structural and regulatory motifs. Eur. J. Biochem. 218: 49-57 https://doi.org/10.1111/j.1432-1033.1993.tb18350.x
  9. Hummel, W. 1999. Large-scale applications of NAD(P)-dependent oxidoreductases: Recent developments. Trends Biotechnol. 17: 487-492 https://doi.org/10.1016/S0167-7799(98)01207-4
  10. Isaacs, S., M. Henze, H. Soeberg, and M. Jummel. 1994. External carbon source addition as a means to control an activated sludge nutrient removal process. Wat. Res. 28: 511-520 https://doi.org/10.1016/0043-1354(94)90002-7
  11. Kim, Y. H., Y. J. Park, S. H. Song, and Y. J. Yoo. 2007. Nitrate removal without carbon source feeding by permeabilized Ochrobactrum anthropi SY509 using an electrochemical bioreactor. Enz. Microb. Technol. 41: 663-668 https://doi.org/10.1016/j.enzmictec.2007.05.018
  12. Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70
  13. Nakano, M. M., T. Hoffmann, Y. Zhu, and D. Jahn. 1998. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by Tnr and ResDE. J. Bacteriol. 180: 5344-5350
  14. Nishiyama, M., J. Suzuki, M. Kusimoto, T. Ohnuki, S. Horinouchi, and T. Beppu. 1993. Cloning and characterization of a nitrite reductase gene from Alcaligenes faecalis and its expression in Escherichia coli. J. Gen. Microbiol. 139: 725-733 https://doi.org/10.1099/00221287-139-4-725
  15. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
  16. Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61 https://doi.org/10.1007/s00253-002-0972-1
  17. Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81: 348-355 https://doi.org/10.1002/bit.10501
  18. Park, D. H., M. Laiveniek, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-2917
  19. Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jeong. 2000. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotech. Lett. 22: 1301-1304 https://doi.org/10.1023/A:1005674107841
  20. Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
  21. Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85
  22. Premakumar, R., G. J. Sorger, and D. Gooden. 1979. Nitrogen metabolite repression of nitrate reductase in Neurospora crassa. J. Bacteriol. 137: 1119-1127
  23. Shin, H. S., M. K. Jain, M. Chartain, and J. G. Zeikus. 2001. Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2-tetraol. Appl. Environ. Microbiol. 57: 506-510
  24. Smith, R. L., M. L. Ceazan, and M. H. Brooks. 1994. Autotrophic hydrogen-oxidizing bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl. Environ. Microbiol. 64: 1949-1955
  25. Steingruber, S. M., J. Friedrich, R. Gachter, and B. Wehrli. 2001. Measurement of denitrification in sediments with the $^{15}$N isotope paring technique. Appl. Environ. Microbiol. 67: 3771-3778 https://doi.org/10.1128/AEM.67.9.3771-3778.2001
  26. Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100-180
  27. Traore, A. S., C. Gaudin, C. E. Hatchikian, J. Le Gall, and J.-P. Belaich. 1983. Energy of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: Maintenance energy coefficient of the sulfite-reducing organism in the absence and presence of its partner. J. Bacteriol. 155: 1260- 1264
  28. van der Donk, W. A. and H. Zhao. 1999. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14: 421-426 https://doi.org/10.1016/S0958-1669(03)00094-6
  29. Willner, I. and D. Mandler. 1989. Enzyme-catalyzed biotransformations through photochemical regeneration of nicotinamide cofactors. Enzyme Microb. Technol. 11: 467-483 https://doi.org/10.1016/0141-0229(89)90027-6
  30. Wu, L., J. van Dam, D. Schipper, M. T. A. Penia Kresnowati, A. M. Proell, C. Ras, W. A. van Winden, W. M. van Gulik, and J. J. Heijnen. 2006. Short-term metabolome dynamics and carbon, electron and ATP balances in chemostat-grown Saccharomyces cerevisiae CEN.PK113-70 following a glucose pulse. Appl. Environ. Microbiol. 72: 3566-3577 https://doi.org/10.1128/AEM.72.5.3566-3577.2006
  31. Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616

Cited by

  1. Effect of bacterial cell size on electricity generation in a single-compartmented microbial fuel cell vol.32, pp.4, 2009, https://doi.org/10.1007/s10529-009-0184-1
  2. Enrichment of $CO_2$-Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment vol.21, pp.6, 2009, https://doi.org/10.4014/jmb.1101.01032
  3. Bioelectrochemical Mn(II) Leaching from Manganese Ore by Lactococcus lactis SK071115 vol.21, pp.2, 2009, https://doi.org/10.4014/jmb.1007.07053
  4. Functional gene pyrosequencing reveals core proteobacterial denitrifiers in boreal lakes vol.6, pp.None, 2009, https://doi.org/10.3389/fmicb.2015.00674