References
- Abril, O. and G. M. Whitesides. 1982. Hybrid organometallic/ enzymatic catalyst systems: Regeneration of NADH using dihydrogen. J. Am. Chem. Soc. 104: 1552-1554 https://doi.org/10.1021/ja00370a017
- Braker, G. and J. M. Teidje. 2003. Nitric oxide reductase (norB) genes from pure culture and environmental samples. Appl. Environ. Microbiol. 69: 3476-3483 https://doi.org/10.1128/AEM.69.6.3476-3483.2003
- Brooks, M. H., R. L. Smith, and D. L. Macalady. 1992. Inhibition of existing denitrification enzyme activity by chloramphenicol. Appl. Environ. Microbiol. 58: 1746-1753
- Choi, K. O., S. H. Song, Y. H. Kim, D. H. Park, and Y. J. Yoo. 2006. Bioelectrochemical denitrification using permeabilized Ochrobactrum anthropi SY509. J. Microbiol. Biotechnol. 16: 678-682
- Cole, J. 1993. Controlling environmental nitrogen through microbial metabolism. Tibtech 11: 368-372 https://doi.org/10.1016/0167-7799(93)90160-B
- Garcia-Ruiz, R., S. N. Pattinson, and B. A. Whitton. 1998. Kinetic parameters of denitrification in a river continuum. Appl. Environ. Microbiol. 64: 2533-2538
- Gauthier, D. K., G. D. Clark-Walker, W. T. Garrard Jr., and J. Lascelles. 1970. Nitrate reductase and soluble cytochrome C in Spirillum itersonii. J. Bacteriol. 102: 797-803
- Hoeren, F. U., B. C. Berks, S. J. Ferguson, and J. E. McCarthy. 1993. Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase from Paracoccus denitrificans. New and conserved structural and regulatory motifs. Eur. J. Biochem. 218: 49-57 https://doi.org/10.1111/j.1432-1033.1993.tb18350.x
- Hummel, W. 1999. Large-scale applications of NAD(P)-dependent oxidoreductases: Recent developments. Trends Biotechnol. 17: 487-492 https://doi.org/10.1016/S0167-7799(98)01207-4
- Isaacs, S., M. Henze, H. Soeberg, and M. Jummel. 1994. External carbon source addition as a means to control an activated sludge nutrient removal process. Wat. Res. 28: 511-520 https://doi.org/10.1016/0043-1354(94)90002-7
- Kim, Y. H., Y. J. Park, S. H. Song, and Y. J. Yoo. 2007. Nitrate removal without carbon source feeding by permeabilized Ochrobactrum anthropi SY509 using an electrochemical bioreactor. Enz. Microb. Technol. 41: 663-668 https://doi.org/10.1016/j.enzmictec.2007.05.018
- Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70
- Nakano, M. M., T. Hoffmann, Y. Zhu, and D. Jahn. 1998. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by Tnr and ResDE. J. Bacteriol. 180: 5344-5350
- Nishiyama, M., J. Suzuki, M. Kusimoto, T. Ohnuki, S. Horinouchi, and T. Beppu. 1993. Cloning and characterization of a nitrite reductase gene from Alcaligenes faecalis and its expression in Escherichia coli. J. Gen. Microbiol. 139: 725-733 https://doi.org/10.1099/00221287-139-4-725
- Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
- Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61 https://doi.org/10.1007/s00253-002-0972-1
- Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81: 348-355 https://doi.org/10.1002/bit.10501
- Park, D. H., M. Laiveniek, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-2917
- Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jeong. 2000. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotech. Lett. 22: 1301-1304 https://doi.org/10.1023/A:1005674107841
- Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
- Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85
- Premakumar, R., G. J. Sorger, and D. Gooden. 1979. Nitrogen metabolite repression of nitrate reductase in Neurospora crassa. J. Bacteriol. 137: 1119-1127
- Shin, H. S., M. K. Jain, M. Chartain, and J. G. Zeikus. 2001. Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2-tetraol. Appl. Environ. Microbiol. 57: 506-510
- Smith, R. L., M. L. Ceazan, and M. H. Brooks. 1994. Autotrophic hydrogen-oxidizing bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl. Environ. Microbiol. 64: 1949-1955
-
Steingruber, S. M., J. Friedrich, R. Gachter, and B. Wehrli. 2001. Measurement of denitrification in sediments with the
$^{15}$ N isotope paring technique. Appl. Environ. Microbiol. 67: 3771-3778 https://doi.org/10.1128/AEM.67.9.3771-3778.2001 - Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100-180
- Traore, A. S., C. Gaudin, C. E. Hatchikian, J. Le Gall, and J.-P. Belaich. 1983. Energy of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: Maintenance energy coefficient of the sulfite-reducing organism in the absence and presence of its partner. J. Bacteriol. 155: 1260- 1264
- van der Donk, W. A. and H. Zhao. 1999. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14: 421-426 https://doi.org/10.1016/S0958-1669(03)00094-6
- Willner, I. and D. Mandler. 1989. Enzyme-catalyzed biotransformations through photochemical regeneration of nicotinamide cofactors. Enzyme Microb. Technol. 11: 467-483 https://doi.org/10.1016/0141-0229(89)90027-6
- Wu, L., J. van Dam, D. Schipper, M. T. A. Penia Kresnowati, A. M. Proell, C. Ras, W. A. van Winden, W. M. van Gulik, and J. J. Heijnen. 2006. Short-term metabolome dynamics and carbon, electron and ATP balances in chemostat-grown Saccharomyces cerevisiae CEN.PK113-70 following a glucose pulse. Appl. Environ. Microbiol. 72: 3566-3577 https://doi.org/10.1128/AEM.72.5.3566-3577.2006
- Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616
Cited by
- Effect of bacterial cell size on electricity generation in a single-compartmented microbial fuel cell vol.32, pp.4, 2009, https://doi.org/10.1007/s10529-009-0184-1
-
Enrichment of
$CO_2$ -Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment vol.21, pp.6, 2009, https://doi.org/10.4014/jmb.1101.01032 - Bioelectrochemical Mn(II) Leaching from Manganese Ore by Lactococcus lactis SK071115 vol.21, pp.2, 2009, https://doi.org/10.4014/jmb.1007.07053
- Functional gene pyrosequencing reveals core proteobacterial denitrifiers in boreal lakes vol.6, pp.None, 2009, https://doi.org/10.3389/fmicb.2015.00674