DOI QR코드

DOI QR Code

Cloning of Dextransucrase Gene from Leuconostoc citreum HJ-P4 and Its High-Level Expression in E. coli by Low Temperature Induction

  • Yi, Ah-Rum (Department of Food Science and Technology, Chungbuk National University) ;
  • Lee, So-Ra (Department of Food Science and Technology, Chungbuk National University) ;
  • Jang, Myoung-Uoon (Department of Food Science and Technology, Chungbuk National University) ;
  • Park, Jung-Mi (Department of Food Science and Technology, Chungbuk National University) ;
  • Eom, Hyun-Ju (Department of Food Science and Technology, Chungbuk National University) ;
  • Han, Nam-Soo (Department of Food Science and Technology, Chungbuk National University) ;
  • Kim, Tae-Jip (Department of Food Science and Technology, Chungbuk National University)
  • Published : 2009.08.31

Abstract

A dextransucrase (LcDS) gene from Leuconostoc citreum HJ-P4 has been amplified and cloned in E. coli. The LcDS gene consists of 4,431 nucleotides encoding 1,477 amino acid residues sharing 63-98% of amino acid sequence identities with other known dextransucrases from Leuc. mesenteroides. Interestingly, 0.1 mM of IPTG induction at $15^{\circ}C$ remarkably increased the LcDS productivity to 19,187 U/I culture broth, which was over 330-fold higher than that induced at $37^{\circ}C$. Optimal reaction temperature and pH of LcDS were determined as $35^{\circ}C$ and pH 5.5 in 20 mM sodium acetate buffer, respectively. Meanwhile, 0.1 mM $CaCl_2$ increased its activity to the maximum of 686 U/mg, which was 2.1-fold higher than that in the absence of calcium ion. Similar to the native Leuconostoc dextransucrase, recombinant LcDS could successfully produce a series of isomaltooligosaccharides from sucrose and maltose, on the basis of its transglycosylation activity.

Keywords

References

  1. Demuth, K., H. J. Jordening, and K. Buchholz. 2002. Oligosaccharide synthesis by dextransucrase: New unconventional acceptors. Carbohydr. Res. 337: 1811-1820 https://doi.org/10.1016/S0008-6215(02)00272-0
  2. Eom, H. J., D. M. Seo, and N. S. Han. 2007. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 117: 61-67 https://doi.org/10.1016/j.ijfoodmicro.2007.02.027
  3. Kang, H. K., Y. M. Kim, and D. M. Kim. 2008. Functional, genetic, and bioinformatic characterization of dextransucrase (DSRBCB4) gene in Leuconostoc mesenteroides B-1299CB4. J. Microbiol. Biotechnol.18: 1050-1058
  4. Kim, D. and J. F. Robyt. 1995. Dextransucrase constitutive mutants of Leuconostoc mesenteroides B-1299. Enz. Microb. Technol. 17: 1050-1056 https://doi.org/10.1016/0141-0229(95)00039-9
  5. Kim, J. F., H. Jeong, J. S. Lee, S. H. Choi, M. Ha, C. G. Hur, et al. 2008. Complete genome sequence of Leuconostoc citreum KM20. J. Bacteriol. 190: 3093-3094 https://doi.org/10.1128/JB.01862-07
  6. Koh, Y. H., M. D. Kim, N. S. Han, and J. H. Seo. 2002. Quantitative analysis of Leuconostoc mesenteroides and Lactobacillus plantarum populations by a competitive polymerase chain reaction. J . Microbiol. Biotechnol. 12: 801-806
  7. Korakli, M. and R. F. Vogel. 2006. Structure/function relationship of homopolysaccharide producing glycansucrase and therapeutic potential of their synthesised glycans. Appl. Microbiol. Biotechnol. 71: 790-803 https://doi.org/10.1007/s00253-006-0469-4
  8. Kralj, S., G. H. van Geel-Schutten, M. M. Dondorff, S. Kirsanovs, M. J. van der Maarel, and L. Dijkhuizen. 2004. Glucan synthesis in the genus Lactobacillus: Isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology 150: 3681-3690 https://doi.org/10.1099/mic.0.27321-0
  9. Lee, M. S., S. K. Cho, H. J. Eom, S. Y. Kim, T. J. Kim, and N. S. Han. 2008. Optimized substrate concentrations for production of long-chain somaltooligosaccharides using dextransucrase of Leuconostoc mesenteroides B-512F. J. Microbiol. Biotechnol. 18: 1141-1145
  10. Majumder, A., R. K. Purama, and A. Goyal. 2007. An overview of purification methods of glycoside hydrolase family 70 dextransucrase. Indian J. Microbiol. 47: 197-206 https://doi.org/10.1007/s12088-007-0040-8
  11. Makarova, K., A. Slesarev, Y. Wolf, A. Sorokin, B. Mirkin, E. Koonin, et al. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. U.S.A. 103: 15611-15616 https://doi.org/10.1073/pnas.0607117103
  12. Malten, M., R. Hollmann, W. D. Deckwer, and D. Jahn. 2005. Production and secretion of recombinant Leuconostoc mesenteroides dextransucrase DsrS in Bacillus megaterium. Biotechnol. Bioeng. 89: 206-218 https://doi.org/10.1002/bit.20341
  13. Miller, A. W. and J. F. Robyt. 1986. Activation and inhibition of dextransucrase by calcium. Biochim. Biophys. Acta 880: 32-39 https://doi.org/10.1016/0304-4165(86)90116-9
  14. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  15. Monchois, V., M. Remaud-Simeon, P. Monsan, and R. M. Wilemot. 1998. Cloning and sequencing of a gene coding for an extracellular dextransucrase (DSRB) from Leuconostoc mesenteroides NRRL B-1299 synthesizing only a $\alpha$(1-6) glucan. FEMS Microbiol. Lett. 159: 307-315 https://doi.org/10.1111/j.1574-6968.1998.tb12876.x
  16. Monchois, V., M. Remaud-Simeon, R. R. Russell, P. Monsan, and R. M. Willemot. 1997. Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Appl. Microbiol. Biotechnol. 48: 465-472 https://doi.org/10.1007/s002530051081
  17. Monchois, V., R. M. Willemot, and P. Monsan. 1999. Glucansucrases: Mechanism of action and structure-function relationship. FEMS Microbiol. Rev. 23: 131-151 https://doi.org/10.1111/j.1574-6976.1999.tb00394.x
  18. Moulis, C., A. Arcache, P.C. Escalier, M. Rinaudo, P. Monsan, M. Remaud-Simeon, and G. Potocki-Veronese. 2006. Highlevel production and purification of a fully active recombinant dextransucrase from Leuconostoc mesenteroides NRRL B-512F. FEMS Microbiol. Lett. 261: 203-210 https://doi.org/10.1111/j.1574-6968.2006.00347.x
  19. Moulis, C., G. Joucla, D. Harrison, E. Fabre, G. Ptocki-Veronese, P. Monsan, and M. Remaud-Simeon. 2006. Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J. Biol. Chem. 281: 31254-31267 https://doi.org/10.1074/jbc.M604850200
  20. Naessens, M., A. Cerdobbel, W. Soetaert, and E. J. Vandamme. 2005. Leuconostoc dextransucrase and dextran: Production, properties and applications. J. Chem. Technol. Biotechnol. 80: 845-860 https://doi.org/10.1002/jctb.1322
  21. Neubauer, H., A. Bauche, and B. Mollet. 2003. Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures. Microbiology 149: 973-982 https://doi.org/10.1099/mic.0.26029-0
  22. Park, J. M., N. S. Han, and T. J. Kim. 2007. Rapid detection and isolation of known and putative $\alpha$-L-arabinofuranosidase genes using degenerate PCR primers. J. Microbiol. Biotechnol. 17: 481-489
  23. Remaud-Simeon, M., R. M. Willemot, P. Sarcabal, G. P. de Montalk, and P. Monsan. 2000. Glucansucrases: Molecular engineering and oligosaccharide synthesis. J. Mol. Catal. B Enz. 10: 117-128 https://doi.org/10.1016/S1381-1177(00)00119-3
  24. Robyt, J. F., S. H. Yoon, and R. Mukerjea. 2008. Dextransucrase and the mechanism for dextran biosynthesis. Carbohydr. Res. 343: 3039-3048 https://doi.org/10.1016/j.carres.2008.09.012
  25. Seo, D. M., S. Y. Kim, H. J. Eom, and N. S. Han. 2007. Synbiotic synthesis of oligosaccharides during milk fermentation by addition of Leuconostoc starter and sugars. J. Microbiol. Biotechnol. 17: 1758-1764
  26. Shirano, Y. and D. Shibata. 1990. Low temperature cultivation of Escherichia coli carrying a rice lipoxygenase L-2 cDNA produces a soluble and active enzyme at a high level. FEBS Lett. 271: 128-130 https://doi.org/10.1016/0014-5793(90)80388-Y
  27. Swistowska, A. M., S. Wittrock, W. Collisi, and B. Hofer. 2008. Heterologous hyper-expression of a glucansucrase-type glycosyltransferase gene. Appl. Microbiol. Biotechnol. 79: 255- 261 https://doi.org/10.1007/s00253-008-1435-0
  28. Terpe, K. 2006. Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72: 211-222 https://doi.org/10.1007/s00253-006-0465-8
  29. Ueda, S., T. Shiroza, and H. K. Kuramitsu. 1988. Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. Gene 69: 101-109 https://doi.org/10.1016/0378-1119(88)90382-4
  30. van Hijum, S. A. F. T., S. Kralj, L. K. Ozimek, L. Dijkhuizen, and I. G. H. van Geel-Schutten. 2006. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol. Mol. Biol. Rev. 70: 157-176 https://doi.org/10.1128/MMBR.70.1.157-176.2006
  31. Yalin, Y., L. Jin, W. Jianhua, T. Da, and T. Zigang. 2008. Expression and characterization of dextransucrase gene dsrX from Leuconostoc mesenteroides in Escherichia coli. J. Biotechnol. 133: 505-512 https://doi.org/10.1016/j.jbiotec.2007.12.002
  32. Yang, J., C. Yang, H. Jiang, and C. Qiao. 2008. Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates. Biodegradation 19: 831-839 https://doi.org/10.1007/s10532-008-9186-2
  33. Yang, Q., M. Li, J. Xu, Y. Bao, X. Lei, and L. An. 2003. Expression of gloshedobin, a thrombin-like enzyme from the venom of Gloydius shedaoensis, in Escherichia coli. Biotechnol. Lett. 25: 101-104 https://doi.org/10.1023/A:1021950815453
  34. Zhang, H., Y. Hu., C. Zhu., B. Zhu, and Y. Wang. 2008. Cloning, sequencing and expression of a dextransucrase gene (dexYG) from Leuconostoc mesenteroides. Biotechnol. Lett. 30:1441-1446 https://doi.org/10.1007/s10529-008-9711-8

Cited by

  1. Development of a High-Throughput Screening Method for Recombinant Escherichia coli with Intracellular Dextransucrase Activity vol.49, pp.2, 2011, https://doi.org/10.1007/s12275-011-1078-1
  2. A novel dextransucrase is produced by Leuconostoc citreum strain B/110-1-2: an isolate used for the industrial production of dextran and dextran derivatives vol.38, pp.9, 2011, https://doi.org/10.1007/s10295-010-0936-x
  3. Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118 vol.93, pp.6, 2009, https://doi.org/10.1007/s00253-011-3562-2
  4. Expression, renaturation and biological activity of recombinant conotoxin GeXIVAWT vol.97, pp.3, 2013, https://doi.org/10.1007/s00253-012-4287-6
  5. Soluble Expression of Human Leukemia Inhibitory Factor with Protein Disulfide Isomerase in Escherichia coli and Its Simple Purification vol.8, pp.12, 2009, https://doi.org/10.1371/journal.pone.0083781
  6. Soluble Prokaryotic Overexpression and Purification of Bioactive Human Granulocyte Colony-Stimulating Factor by Maltose Binding Protein and Protein Disulfide Isomerase vol.9, pp.3, 2009, https://doi.org/10.1371/journal.pone.0089906
  7. Soluble overexpression and purification of bioactive human CCL2 in E. coli by maltose-binding protein vol.42, pp.3, 2009, https://doi.org/10.1007/s11033-014-3812-3
  8. Structure modeling and functional analysis of recombinant dextransucrase from Weissella confusa Cab3 expressed in Lactococcus lactis vol.46, pp.8, 2016, https://doi.org/10.1080/10826068.2016.1141299
  9. An α-1,6-and α-1,3-linked glucan produced by Leuconostoc citreum ABK-1 alternansucrase with nanoparticle and film-forming properties vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-26721-w
  10. Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure-Function Relationship Studies and Engineering vol.9, pp.8, 2021, https://doi.org/10.3390/microorganisms9081607