• 제목/요약/키워드: Leuconostoc citreum HJ-P4

검색결과 3건 처리시간 0.015초

Wort Fermentation by Leuconostoc citreum Originated from Kimchi and Sensory Properties of Fermented Wort

  • Delgerzaya, Purev;Shin, Jin-Yeong;Kim, Kwang-Ok;Park, Jin-Byung
    • Food Science and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.1083-1090
    • /
    • 2009
  • Fermentation of wort was investigated with an ultimate goal to develop a fermented beverage rich in prebiotics and functional ingredients as well as desirable in flavors. Wort was fermented with Leuconostoc citreum HJ-P4 originated from kimchi and subjected to sensory descriptive analysis. L. citreum HJ-P4 produced various organic acids (e.g., lactic acid, acetic acid) as well as functional sugars (e.g., mannitol, panose) during wort fermentation. The concentration and ratio of lactic acid and acetic acid were significantly influenced by roasting conditions of malts used for wort preparation and aeration conditions during fermentation. The concentration of mannitol and panose varied depending on the sucrose content of wort and aeration conditions. Sensory characteristics of the fermented worts were clearly differentiated according to the roasting conditions of malts used for wort preparation and aeration conditions during fermentation. These results indicate that metabolite concentration of fermented wort and its sensory properties can be manipulated with roasting conditions of malts and fermentation conditions.

Cloning of Dextransucrase Gene from Leuconostoc citreum HJ-P4 and Its High-Level Expression in E. coli by Low Temperature Induction

  • Yi, Ah-Rum;Lee, So-Ra;Jang, Myoung-Uoon;Park, Jung-Mi;Eom, Hyun-Ju;Han, Nam-Soo;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권8호
    • /
    • pp.829-835
    • /
    • 2009
  • A dextransucrase (LcDS) gene from Leuconostoc citreum HJ-P4 has been amplified and cloned in E. coli. The LcDS gene consists of 4,431 nucleotides encoding 1,477 amino acid residues sharing 63-98% of amino acid sequence identities with other known dextransucrases from Leuc. mesenteroides. Interestingly, 0.1 mM of IPTG induction at $15^{\circ}C$ remarkably increased the LcDS productivity to 19,187 U/I culture broth, which was over 330-fold higher than that induced at $37^{\circ}C$. Optimal reaction temperature and pH of LcDS were determined as $35^{\circ}C$ and pH 5.5 in 20 mM sodium acetate buffer, respectively. Meanwhile, 0.1 mM $CaCl_2$ increased its activity to the maximum of 686 U/mg, which was 2.1-fold higher than that in the absence of calcium ion. Similar to the native Leuconostoc dextransucrase, recombinant LcDS could successfully produce a series of isomaltooligosaccharides from sucrose and maltose, on the basis of its transglycosylation activity.

Characterization of Low Temperature-adapted Leuconostoc citreum HJ-P4 and Its Dextransucrase for the Use of Kimchi Starter

  • Yim, Chang-Youn;Eom, Hyun-Ju;Jin, Qing;Kim, So-Young;Han, Nam-Soo
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1391-1395
    • /
    • 2008
  • Leuconostoc citreum HJ-P4 is a strain isolated for kimchi fermentation with its low temperature-adapted growth feature and its high dextransucrase activity. The detailed characteristics of cell growth and dextran sucrase activities were investigated at various environmental conditions such as temperatures, pHs, salts, and raw ingredients. This strain showed almost 2-fold higher maximal cell concentration ($X_{max}$) than that of the type culture Leuconostoc mesenteroides B-512F at $10^{\circ}C$. The $X_{max}$ of the strain was maximum at pH 7 and the cell growth was inhibited by salts in a dose-dependent mode up to 7%. Addition of pepper (<6%), garlic (<10%), and ginger (<2%) in kimchi gave no inhibition effect on the growth of HJ-P4. Dextransucrase synthesized by this strain retained over 80% of its maximum activity at $10^{\circ}C$ showing a comparable cold-adapted feature to its host microbe. This culture can be used as a starter culture in the industrial kimchi production giving desirable functions and predominance at low temperature.