DOI QR코드

DOI QR Code

Design of Miniaturized Wilkinson Power Divider Using Substrate Integrated Artificial Dielectric

기판적층형 가유전체를 이용한 소형화된 윌킨슨 전력분배기 설계

  • Koo, Ja-Kyung (Department of Electrical and Communication Engineering, Soonchunhyang University) ;
  • Lim, Jong-Sik (Department of Electrical and Communication Engineering, Soonchunhyang University) ;
  • Ahn, Dal (Department of Electrical and Communication Engineering, Soonchunhyang University)
  • 구자경 (순천향대학교 전기통신공학과) ;
  • 임종식 (순천향대학교 전기통신공학과) ;
  • 안달 (순천향대학교 전기통신공학과)
  • Published : 2009.07.31

Abstract

This paper describes a size-reduced Wilkinson power divider using substrate integrated artificial dielectric(SIAD). SIAD transmission lines have increased effective refractive index, so the line width and length are reduced from those of standard transmission lines. Therefore the "size-reduction effect" is achieved if SIAD lines are applied to high frequency circuits. An efficient simulation method is proposed for SIAD lines which have an enormous number of via-holes. A 2GHz Wilkinson power divider is designed and measured using SIAD transmission line as an example of application. The size of the fabricated divider is reduced by 32% due to the increased effective refractive index of SIAD, while the performances are maintained similarly.

본 논문에서는 기판 적층형 가유전체를 이용한 소형화된 윌킨슨 전력분배기 설계에 대하여 기술한다. 기판 적층형 가유전체 전송선로는 유효굴절률이 표준형보다 증가하여 전송선로의 선폭과 길이를 짧게 하는데, 이를 전자파회로에 응용하여 회로의 소형화 효과를 얻을 수 있다. 본 논문에서는 다수의 비어홀을 가진 기판 적층형 가유전체 구조를 효과적으로 시뮬레이션 하는 방법을 제안하고, 이를 회로 소형화에 응용한 사례를 보이기 위하여 기판 적층형가유전체를 이용한 소형화된 윌킨슨 전력분배기를 설계한다. 예로써 2GHz대의 윌킨슨 전력분배기를 설계, 측정한 결과가 제시되는데, SIAD 구조에 의한 유효 굴절률의 증가로 인하여 표준형 회로와 비교하여 동일한 전기적 특성을 유지하면서도 크기가 32% 감소되는 결과를 보인다.

Keywords

References

  1. W. E. Kock, "Metallic delay lenses", Bell Syst. Tech. J., vol. 27, pp. 58-82, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01331.x
  2. S. B. Cohn, "Analysis of the metal strip delay structure for microwaves lenses", J. Appl. Phys., vol. 20, pp. 257 –262, Mar. 1949. https://doi.org/10.1063/1.1698352
  3. S. B. Cohn, "The electric and magnetic constants of metallic delay media containing obstacles of arbitrary shape and thickness", J. Appl. Phys., vol. 22, pp. 628– 634, May 1951. https://doi.org/10.1063/1.1700020
  4. S. B. Cohn, "Microwave measurements on metallic delay media", Proc. IRE, vol. 41, pp. 1177-1183, Sep. 1953. https://doi.org/10.1109/JRPROC.1953.274454
  5. M. Coulombe, H. V. Nguyen, and C. Caloz, "Substrate Integrated Artificial Dielectric (SIAD) Structure for miniaturized Microstrip Circuits", IEEE. Ant. and Wir. Prop. Lett. vol. 6, pp. 575-579, 2007. https://doi.org/10.1109/LAWP.2007.910959
  6. I. Awai, H. Kubo, T. Iribe, D. Wakamiya, and A. Sanada, "An artificial dielectric material of huge permittivity with novel anisotropy and its application to a microwave BPF", in Proc. IEEE Int. Microw. Symp. Conf., Philadelphia, PA, pp. 1085-1088, Jun. 9-13, 2003. https://doi.org/10.1109/MWSYM.2003.1212557
  7. David M. Pozar, Microwave Engineering, 3rd edition, John Wiely and Sons, Inc., pp. 143-149, 2003.
  8. N. J. Kolettis and R. E. Collin, "Anisotropic properties of strip-type artificial dielectric", IRE Trans. Microw. Theory Tech., vol. MTT-9, no. 5, pp. 436-441, Sep. 1961.
  9. M.-K. Hu and D. K. Cheng, "A new class of artificial dielectrics," in WESCON/58 Conf. Record, vol. 2, pp. 21-25, Aug. 1958. https://doi.org/10.1109/WESCON.1958.1150207

Cited by

  1. An Application of Artificial Dielectric Substrate for Design of Size-reduced Directional Couplers vol.12, pp.7, 2011, https://doi.org/10.5762/KAIS.2011.12.7.3169