토복령(土茯笭)이 RAW264.7 대식세포주에서 산화질소 억제에 미치는 영향

Inhibitory effect of Smilacis Glabrae Rhizoma on nitric oxide production in the macrophage cell line RAW 264.7

  • 이강희 (세명대학교 한의과대학 경혈학교실) ;
  • 정준희 (세명대학교 한의과대학 경혈학교실) ;
  • 김이화 (세명대학교 한의과대학 경혈학교실) ;
  • 이재혁 (세명대학교 한의과대학 한방신경정신과학교실)
  • Lee, Kang-Hee (Dept. of Meridian & Acupoint, College of Oriental Medicine, Semyung University) ;
  • Jung, Jun-Hee (Dept. of Meridian & Acupoint, College of Oriental Medicine, Semyung University) ;
  • Kim, Ee-Hwa (Dept. of Meridian & Acupoint, College of Oriental Medicine, Semyung University) ;
  • Lee, Jae-Hyuk (Dept. of Oriental Neuropsychiatry, College of Oriental Medicine, Semyung University)
  • 발행 : 2009.09.27

초록

Objectives : 본 연구의 목적은 제습, 해독, 통리관절등의 효능이 있는 토복령이 RAW264.7 대식세포주에서 lipopolysaccharide(LPS)로 처치하여 생성되는 nitric oxide(NO)와 prostaglandin $E_2$($PGE_2$)에 억제작용이 있는지 관찰하고자 하는 것이다. Methods : 토복령이 RAW264.7 대식세포주에 세포독성이 유무를 관찰하기 위하여 농도별 MTT assay를 수행하여 세포생존율을 측정하였다. 또한 LPS로 염증유발된 RAW264.7 대식세포주에서 토복령의 농도별 처치가 NO 및 $PGE_2$ 생성억제에 미치는 영향을 관찰하고자 NO 및 $PGE_2$ assay를 수행하였다. Results : 토복령의 농도별 처치가 RAW264.7 대식세포주에서 세포독성을 유발하는지 MTT assay로 측정한 결과 세포독성은 관찰되지 않았으며, 토복령은 LPS처치로 인하여 증가된 NO 및 $PGE_2$ 생성을 통계학적으로 유의하게 감소시킴을 관찰하였다. Conclusions : 본 연구를 통하여 토복령은 RAW264.7 대식세포주에서 LPS로 유도된NO 및 $PGE_2$ 생성을 효과적으로 억제시킴으로써 추후 염증질환의 치료제로서 가능성을 확인하였다.

키워드

참고문헌

  1. Compiled by Jiangsu New Medical College. tu fu ling. In: Chinese materia medica dictionary. Shanghai: Shanghai Science and Technology Publishing House, 1977 : pp.91-93.
  2. Xu Q, Wang R, Xu L, Jiang J. Effects of Rhiszoma smilacis glabrae on cellular and humoral immune responses. Chin J Immunol 1993 ; 9 : 39-42.
  3. Jiang J, Wu F, Lu J, Lu Z, Xu Q. Anti-inflammatory activity of the aqueous extract from rhizoma smilacis glabrae. Pharmacol Res 1997 ; 36(4) : 309-314. https://doi.org/10.1006/phrs.1997.0234
  4. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmaceutical Reviews 1991 ; 43 : 109-142.
  5. Tewtrakul S, Wattanapiromsakul C, Mahabusarakam W. Effects of compound from Garcinia magnostana on inflammatory mediators in RAW264.7 macrophage cells. J Ethnopharmacol 2009 ; 121 : 379-382. https://doi.org/10.1016/j.jep.2008.11.007
  6. Goldsby RA, Kindt TJ, Osborne BA, Kuby J. Immunology, 5th ed. WH Freeman and Company, New York, 2002 : p.359.
  7. Cheng A, Wan F, Jin Z, Wang J, Xu X. Nitrite oxide and inducible nitric oxide synthase were regulated by polysaccharides isolated from Glycyrrhiza uralensis Fisch. J Ethnopharmacol 2008 ; 118 : 59-64. https://doi.org/10.1016/j.jep.2008.03.002
  8. Hibbs Jr JB, Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 1987 ; 235 : 473-479. https://doi.org/10.1126/science.2432665
  9. Messmaer UK, Ankarcrona M, Nicotera P, Brune B. p53 expression in nitric oxide-induced apoptosis. FEBS Lett 1994 ; 355 : 23-29. https://doi.org/10.1016/0014-5793(94)01161-3
  10. Lorsbach RB, Murphy WJ, Lowenstein CJ, Snyder SH, Russell SW. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J Biol Chem 1993 ; 268 : 1908-1913.
  11. Posadas I, Terencio MC, Guillen I, Ferrandiz ML, Coloma J, Paya M, Alcaraz MJ. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch Pharmacol 2000 ; 361(1) : 98-106. https://doi.org/10.1007/s002109900150
  12. Weinstein SL, Gold MR, DeFranco AL. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages, Proc Natl Acad Sci USA 1991 ; 88 : 4148–4152.
  13. Raetz CR. Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction, J Bacteriol 1993 ; 175 : 5745–5753.
  14. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function, Annu Rev Immunol 1997 ; 15 : 323–350.
  15. Bogdan C. Nitric oxide and the immune response, Nat Immunol 2001 ; 2 : 907–916.
  16. Miljkovic D, Trajkovic V. Inducible nitric oxide synthase activation by interleukin-17, Cytokine Growth Factor Rev 2004 ; 15 : 21–32.
  17. Kim ND, Kim EM, Kang KW, Cho MK, Choi SY, Kim SG. Ginsenoside Rg3 inhibits phenylephrine-induced vascular contraction through induction of nitric oxide synthase, Br J Pharmacol 2003 ; 140 : 661–670.
  18. Hobbs AJ, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target, Annu Rev Pharmacol Toxicol 1999 ; 39 : 191–220.
  19. Tannenbaum H, Davis P, Russell AS, Atkinson MH, Maksymowych W, Huang SH, Bell M, Hawker GA, Juby A, Vanner S, Sibley J. An evidence-based approach to prescribing NSAIDs in musculoskeletal disease: a Canadian consensus, Can Med Assoc J 1996 ; 155 : 77–88
  20. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2, Annu Rev Pharmacol Toxicol 1998 ; 38 : 97–120.
  21. Lim BV, Lee CY, Kang JO, Kim CJ, Cho SH. Bee venom suppresses ischemia-induced increment of apoptosis and cell proliferation in hippocampal dentate gyrus, Korean J Oriental Physiol Pathol 2004 ; 18 : 236–242.