DOI QR코드

DOI QR Code

Strongest Beams having Constant Volume Supported by Clamped-Clamped and Clamped-Hinged Ends

고정-고정 및 고정-회전 지점으로 지지된 일정체적 최강보

  • 이병구 (원광대학교 토목환경공학과) ;
  • 이태은 (원광대학교 토목환경공학과) ;
  • 신성철 (익산시청 건설교통국 재난관리과)
  • Received : 2009.02.25
  • Accepted : 2009.04.26
  • Published : 2009.05.31

Abstract

This paper deals with the strongest beams with the solid regular polygon cross-section, whose volumes are always held constant. The differential equation of the elastic deflection curve of such beam subjected to the concentrated and trapezoidal distributed loads are derived and solved by using the double integration method. The Simpson's formula was used to numerically integrate the differential equation. In the numerical examples, the clamped-clamped and clamped-hinged ends are considered as the end constraints and the linear, parabolic and sinusoidal tapers are considered as the shape function of cross sectional depth. As the numerical results, the configurations, i.e. section ratios, of the strongest beams are determined by reading the section ratios from the numerical data obtained in this study, under which static maximum behaviors become to be minimum.

이 논문은 정다각형 중실 단면을 갖는 최강보에 관한 연구이다. 이 연구에서 보의 체적은 항상 일정하다. 이러한 보에 집중하중과 만재 사다리꼴 분포하중이 작용하는 경우에 탄성곡선의 미분방정식을 유도하고 이를 중적분법을 이용하여 풀어 정적 거동을 산정하였다. 미분방정식의 정적분은 Simpson 공식을 이용하였다. 수치해석 예에서는 고정-고정 보 및 고정-회전보를 채택하였고, 단면깊이의 형상함수로는 선형, 포물선형 및 정현형의 함수를 채택하였다. 이 연구에서 얻은 수치해석의 결과로부터 보의 정적 최대거동값이 최소가 되는 단면형상 즉 최강단면비를 산정하였다.

Keywords

References

  1. 신성철(2001) 변단면 연속보의 자동화 해석, 석사학위논문, 원광대학교 대학원.
  2. 이병구, 이태은, 김영일(2009) 일정체적 단순지지 최강보. 대한토목학회논문집, 대한토목학회, 제29권, 제2A호, pp. 155-162.
  3. Atanackovic, T.M. and Simic, S.S. (1999) On the optimal shape of a Pflüger column. European Journal of Mechanics A-Solid, Vol. 18, pp. 903-913. https://doi.org/10.1016/S0997-7538(99)00128-X
  4. Carnahan, B., Luther, H.A., and Wilkes, J.O. (1969) Applied numerical methods. John Wiley & Sons, USA.
  5. Cox, S.J. and Overton, M.I. (1992) On the optimal design of columns against buckling. SIAM Journal on Mathematical Analysis, Vol. 23, pp. 287-325. https://doi.org/10.1137/0523015
  6. Haftka, R.T., Grudal, Z., and Kamat, M.P. (1990) Elements of structural optimization. Kluwer Academic Publisher, Dordrecht.
  7. Keller, J.B. (1960) The shape of the strongest column. Archive for Rational Mechanics and Analysis, Vol. 5, pp. 275-285. https://doi.org/10.1007/BF00252909
  8. Keller, J.B. and Niordson, F.I. (1966) The tallest column. Journal of Mathematics and Mechanics, Vol. 16, pp. 433-446.
  9. Lee, B.K., Carr, A.J., Lee, T.E., and Ahn, D.S. (2005) Elasticas and buckling loads of shear deformable tapered columns. International Journal of Structural Stability and Dynamics, Vol. 5, No. 3, pp. 317-335. https://doi.org/10.1142/S0219455405001684
  10. Lee, B.K., Carr, A.J., Lee, T.E., and Kim, I.J. (2006) Buckling loads of columns with constant volume. Journal of Sound and Vibrations. Vol. 294, Issues. 1-2, pp. 381-387. https://doi.org/10.1016/j.jsv.2005.11.004
  11. Lee, B.K. and Oh, S.J. (2000) Elastica and buckling loads of simple tapered columns with constant volume. International Journal of Solids and Structures, Vol. 37, Issue 18, pp. 2507-2518. https://doi.org/10.1016/S0020-7683(99)00007-4
  12. Taylor, J.E. (1967) The strongest column-energy approach. Journal of Applied Mechanics, ASME, Vol. 34, pp. 486-487. https://doi.org/10.1115/1.3607710
  13. Wilson, J.F., Holloway, D.M., and Biggers, S.B. (1971) Stability experiments on the strongest columns and circular arches. Experimental Mechanics, Vol. 11, pp. 303-308. https://doi.org/10.1007/BF02320583