Aerial Triangulation with 3D Linear Features and Arc-Length Parameterization

  • 투고 : 2009.08.18
  • 심사 : 2009.09.17
  • 발행 : 2009.09.30

초록

기존의 도화사 수작업에 의한 기준점기반 항공삼각측량 기법은 전통적인 사진측량에서 유용하게 이용되어 왔으나, 자동화된 수치사진측량 기법이 확산되면서 기존방법의 문제점이 대두되었다. 따라서 본 논문은 보다 발전된 자동화 기술 개발을 위하여 상위 레벨인 선형객체들을 이용한 항공삼각측량 가능성을 제시하고 검증하고자 하였다. 최근에 발달된 선형 객체 추출기법 알고리즘은 보다 정확한 선형 객체 추출기법을 제공하였지만, 포인트 추출기법에 비하여 추출하기 어려운 단점이 존재한다. 따라서 본 논문은 이를 극복하기 위하여 수동 디지타이징이나 에지 연산자를 통하여 쉽게 획득되는 포인트를 이용하여 상위레벨 선형객체를 생성하고, 이를 통해 지형공간정보 이용 가능성을 높이고자 하였다. 본 연구 결과를 통해 진화하고 있는 컴퓨터 환경에 적합한 선형객체를 이용한 항공삼각측량 기법을 발전시킬 것으로 기대된다.

Point-based methods with experienced human operators are processed well in traditional photogrammetric activities but not the autonomous environment of digital photogrammetry. To develop more robust and accurate techniques, higher level objects of straight linear features accommodating element other than points are adopted instead of points in aerial triangulation. Even though recent advanced algorithms provide accurate and reliable linear feature extraction, extracting linear features is more difficult than extracting a discrete set of points which can consist of any form of curves. Control points which are the initial input data and break points which are end points of piecewise curves are easily obtained with manual digitizing, edge operators or interest operators. Employing high level features increase the feasibility of geometric information and provide the analytical and suitable solution for the advanced computer technology.

키워드

참고문헌

  1. Ackerman, F., and V. Tsingas. 1994. Automatic digital aerial triangulation. Proceedings of ACSM/ASPRS annual convention 1, pp.1-12.
  2. Ebner, H., and T. Ohlhof. 1994. Utilization of ground control points for image orientation without point identification in image space. International Archives of Photogrammetry and Remote Sensing Vol.30, No.2/1, pp.206-211.
  3. Haala, N., and G. Vosselman. 1992. Recognition of road and river patterns by relational matching. International Archives of Photogrammetry and Remote Sensing, Vol.20, No.B3, pp.969–975.
  4. Habib, A.F., A. Asmamaw, D. Kelley, and M. May. 2000. Linear features in photogrammetry. Tech. Rep. 450, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University.
  5. Hannah, M. 1989. A system for digital stereo image matching. Photogrammetric Engineering and Remote Sensing, Vol.55, No.12, pp.1765–1770.
  6. Mikhail, E.M. 1993. Linear features for photogrammetric restitution and object completion. SPIE proceedings-Integrating photogrammetric techniques with scene analysis and machine vision, Orlando, FL Vol.1944.
  7. Schenk, T. 1998. Determining transformation parameters between surfaces without identical points. Tech. Rep. No. 15, Department of Civil and Environment Engineering and Geodetic Science, The Ohio State University
  8. Schenk, T., and C. Toth. 1993. Towards a fully automated aero-triangulation system. ACSM/ASPRS, Annual Convention Technical Papers 3, pp.340-347.
  9. Schenk, T., C. Toth, and J. Li. 1991. Towards an autonomous system for orienting digital stereopaires. Photogrammetric Engineering and Remote Sensing, Vol.57, No.8, pp.1057-1064.
  10. Schickler, W. 1992. Feature matching for outer orientation of single images using 3d wireframe control points. International Archives of Photogrammetry and Remote Sensing, Vol.29, No.B3, pp.591-598.
  11. Zalmanson, G., and T. Schenk. 2007. Relative orientation with straight lines? Unpublished.