DOI QR코드

DOI QR Code

Hack's Law and the Geometric Properties of Catchment Plan-form

Hack의 법칙과 집수평면의 기하학적 특성

  • 김주철 (한국수자원공사 수자원연구원) ;
  • 이상진 (한국수자원공사 수자원연구원)
  • Published : 2009.09.30

Abstract

This study makes a systematic approach to Hack's law considering self-affinity and self-similarity of natural basins as well as the elongation of corresponding catchment-plan forms. Catchment-plan forms extracted from DEM appear to be the population come from the interactions of 2 hypotheses on Hack's law. It is judged that the elongation measures based on inertia moments are more intuitive than the ones based on main channel lengths. The exponent of Hack's law, h, seems to be similar to the result of Gray's study (1961). However Hurst exponent, H, being 0.96 imply that catchment-plan forms considered in this study have isotropic increasing properties with scale. From this point of view it is inferred that the shapes of the basins in this study would be more affected from self-similarity of main channel lengths than self-affinity of catchment-plan forms.

본 연구에서는 집수평면의 신장도에 대한 검토와 함께 자연유역의 자기유사성 및 자기상사성을 고려하여 Hack의 법칙에 대한 체계적인 접근을 수행하여 보았다. DEM으로부터 추출된 대상유역의 집수평면들은 Hack의 법칙에 대한 두 가설이 상호작용을 할 경우 나타날 수 있는 유역 형상들에 대한 모집단처럼 나타났다. 유역면적에 따른 집수평면 신장도의 변화를 도시해 본 결과 유로연장을 기반으로 한 고전적인 지형인자들보다는 관성적률을 기반으로 한 신장도가 보다 직관적인 결과를 줄 수 있을 것으로 판단되었다. Hack의 법칙에 대한 지수 h는 Gray (1951)의 연구결과와 유사하게 산정됨을 확인할 수 있었다. 하지만 대상유역들에 대한 Hurst의 지수 H는 0.96으로 나타나 본 연구에서 고려한 집수평면들은 규모에 따라 등방성 성장률을 가지고 있는 것으로 사료되었다. 이로부터 본 연구의 대상유역들의 형상은 집수평면의 자기유사성보다는 유로연장의 자기상사성에 더 영향을 받는 것으로 추론할 수 있었다.

Keywords

References

  1. 김재한 (2005). 수문계의 수학적 모형-선형계를 중심으로-. 새론
  2. 양창현 (1996). 구조역학. 청문각
  3. Abraham, A.D. (1984). “Channel network: A geomorphological perspective.” Water Resources Research, Vol. 20, No. 2, pp. 161-188 https://doi.org/10.1029/WR020i002p00161
  4. Bak, P. (1996). How nature works. Copernicus/ Springer-Verlag, New York
  5. Brierley, G.J. and Fryirs, K.A. (2005). Geomorphology and river management. Blackwell
  6. Eagleson, P.S. (1970). Dynamic Hydrology. McGraw- Hill
  7. Feder, J. (1988). Fractals. Plenum
  8. Gray, D.M. (1961). “Interrelationships of watershed characteristics.” Journal of Geophysical Research, Vol. 66, No. 4, pp. 1215-1223 https://doi.org/10.1029/JZ066i004p01215
  9. Hack, J.T. (1957). “Studies of longitudinal profiles in Virginia and Maryland.” US Geological Survey Professional Paper, 294-B pp. 45-97
  10. Hergarten, S. (2002). Self-organized criticality in earth system. Springer-Verlag, New York
  11. Horton, R.E. (1932). “Drainage-basin characteristics.” Transactions of the American Geophysical Union, Vol. 13, pp. 350-361. https://doi.org/10.1029/TR013i001p00350
  12. Mandelbrot, B.B. (1982). The Fractal geometry of nature. W. H. Freeman, New York
  13. Maritan, A., Rinaldo, A., Rigon, R., Giacometti, A. and Rodríguez-Iturbe, I. (1996). “Scaling laws for river networks.” Physical Review E, Vol. 53, No. 2, pp. 1510-1515 https://doi.org/10.1103/PhysRevE.53.1510
  14. Moussa, R. (2003). “On morphometric properties of basins, scale effects and hydrological response.” Hydrological Processes, Vol. 17, pp. 33-58 https://doi.org/10.1002/hyp.1114
  15. Rigon, R., Rodríguez-Iturbe, I., Maritan, A., Giacometti, A., Tarboton, D.G. and Rinaldo, A. (1996). “On Hack's law.” Water Resources Research, Vol. 32, No. 11, pp. 3367-3374 https://doi.org/10.1029/96WR02397
  16. Rodriguez-Iturbe, I. and Rinaldo, A. (2003). Fractal river basins-Chance and self-organization. Cambridge
  17. Shumm, S.A. (1956). Evolution of drainage systems and slopes in badlands ar Perth Amboy, New Jersey. ” Geological Society of America Bulletin, Vol. 67, pp. 597-646 https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
  18. Shreve, R.L. (1966). “Statistical law of stream numbers.” Journal of Geology, Vol. 74, pp. 17-37 https://doi.org/10.1086/627137
  19. Smart, J.S. (1972). “Channel Networks.” Advances in Hydroscience, Vol. 8, pp. 305-346 https://doi.org/10.1016/B978-0-12-021808-0.50011-5
  20. Strahler, A.N. (1964). Quantitative geomorphology of drainage basins and channel networks. In: Handbook of Applied Hydrology. McGraw-Hill, pp. 4.39-4.76
  21. Tarboton, D.G., Bras, R.L. and Rodríguez-Iturbe, I. (1988). “The Fractal nature of river networks.” Water Resources Research, Vol. 24, No. 8, pp. 1317-1322 https://doi.org/10.1029/WR024i008p01317

Cited by

  1. Hack's Law and Topographical Properties Analysis of Small River Basin vol.16, pp.2, 2016, https://doi.org/10.9798/KOSHAM.2016.16.2.173
  2. Analysis of drainage structure for river basin on the basis of power law distribution vol.49, pp.6, 2016, https://doi.org/10.3741/JKWRA.2016.49.6.495
  3. Evaluation of Parameter Characteristics of a Storage Function Model vol.19, pp.2, 2014, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000678