DOI QR코드

DOI QR Code

FIXED POINT THEOREM IN $\cal{L}^*_\cal{M}$-FUZZY METRIC SPACES FOR TWO MAPS

  • Kim, Jong-Kyu (Department of Mathematics, Education Kyungnam University) ;
  • Sedghi, S. (Department of Mathematics Islamic Azad University-Ghaemshar Branch) ;
  • Shobe, N. (Department of Mathematics Islamic Azad University-Babol Branch)
  • 투고 : 2008.12.23
  • 심사 : 2009.05.07
  • 발행 : 2009.06.30

초록

In this paper, we give some new denitions of $\cal{L}^*_\cal{M}$-fuzzy metric spaces and we prove a common xed point theorem for two mappings in complete $\cal{L}^*_\cal{M}$-fuzzy metric spaces. We get some improved versions of several xed point theorems in complete $\cal{L}^*_\cal{M}$-fuzzy metric spaces.

키워드

참고문헌

  1. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. C. Cornelis, G. Deschrijver and E. E. Kerre, Classification of intuitionistic fuzzy implicators: an algebraic approach, In H. J. Caulfield, S. Chen, H. Chen, R. Duro, V. Honaver, E. E. Kerre, M. Lu, M. G. Romay, T. K. Shih, D. Ventura, P. P. Wang, and Y. Yang, editors, Proceedings of the 6th Joint Conference on Information Sciences, 105-108, 2002.
  3. C. Cornelis, G. Deschrijver and E. E. Kerre, Intuitionistic fuzzy connectives revisited. In Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, 1839-1844, 2002.
  4. G. Deschrijver, C. Cornelis and E. E. Kerre, On the representation of intuitionistic fuzzy tnorms and t-conorms, IEEE Transactions on Fuzzy Systems, 12 (2004), 45-61. https://doi.org/10.1109/TFUZZ.2003.822678
  5. G. Deschrijver and E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 23 (2003), 227-235.
  6. M. S. Elnaschie, On the uncertainty of Cantorian geometry and two-slit expriment, Chaos, Soliton and Fractals, 9 (1998), 517-529. https://doi.org/10.1016/S0960-0779(97)00150-1
  7. M. S. Elnaschie, On a Fuzzy Kahler-like Manifold which is consistent with two-slit expriment, Int J of Nonlinear Science and Numerical Simulation, 6 (2005), 95-98.
  8. M. S. Elnaschie, A review of E infinity theory and the mass spectrum of high energy particle physics, Chaos, Soliton and Fractals, 19 (2004), 209-236. https://doi.org/10.1016/S0960-0779(03)00278-9
  9. B. C. Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329-336.
  10. El Naschie MS., The idealized quantum two-slit gedanken experiment revisited-Criticism and reinterpretation, Chaos, Solitons and Fractals 27 (2006), 9-13. https://doi.org/10.1016/j.chaos.2005.05.010
  11. A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
  12. J. Goguen, L-fuzzy sets, J Math Anal Appl., 18 (1967), 145-174. https://doi.org/10.1016/0022-247X(67)90189-8
  13. V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Sys., 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9
  14. I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326-334.
  15. B. E. Rhoades, A fixed point theorem for generalized metric spaces, Int. J. Math. Sci., 19 (1996), 145-153. https://doi.org/10.1155/S016117129600021X
  16. Mihet D., A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Sys., 144 (2004), 431-439. https://doi.org/10.1016/S0165-0114(03)00305-1
  17. B. Singh and R. K. Sharma, Common fixed points via compatible maps in D-metric spaces, Rad. Mat., 11 (2002), 145-153.
  18. B. Schweizer, H. Sherwood and RM. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica, 1 (1988), 5-17.
  19. G. Song, Comments on "A common fixed point theorem in a fuzzy metric spaces", Fuzzy Sets Sys., 135 (2003), 409-413. https://doi.org/10.1016/S0165-0114(02)00131-8
  20. Y. Tanaka, Y. Mizno and T. Kado, Chaotic dynamics in Friedmann equation, Chaos, Soliton and Fractals, 24 (2005), 407-422. https://doi.org/10.1016/j.chaos.2004.09.034
  21. R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J Pure Appl Math., 30 (1999), 419-423.
  22. R. Vasuki R and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets Sys., 135 (2003), 409-413. https://doi.org/10.1016/S0165-0114(02)00131-8
  23. L. A. Zadeh, Fuzzy sets, Inform. and control, 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X